
GeoSim: Realistic Video Simulation via Geometry-Aware Composition for

Self-Driving

Yun Chen1* Frieda Rong1,3* Shivam Duggal1* Shenlong Wang1,2 Xinchen Yan1

Sivabalan Manivasagam1,2 Shangjie Xue1,4 Ersin Yumer1 Raquel Urtasun1,2

1Uber Advanced Technologies Group 2University of Toronto
3 Stanford University 4Massachusetts Institute of Techonology

{chenyuntc, shivamduggal.9507, skywalkeryxc, meyumer}@gmail.com,

rongf@cs.stanford.edu, {slwang, manivasagam, urtasun}@cs.toronto.edu, sjxue@mit.edu

Abstract

Scalable sensor simulation is an important yet challeng-

ing open problem for safety-critical domains such as self-

driving. Current works in image simulation either fail

to be photorealistic or do not model the 3D environment

and the dynamic objects within, losing high-level control

and physical realism. In this paper, we present GeoSim,

a geometry-aware image composition process which syn-

thesizes novel urban driving scenarios by augmenting ex-

isting images with dynamic objects extracted from other

scenes and rendered at novel poses. Towards this goal, we

first build a diverse bank of 3D objects with both realis-

tic geometry and appearance from sensor data. During

simulation, we perform a novel geometry-aware simulation-

by-composition procedure which 1) proposes plausible and

realistic object placements into a given scene, 2) renders

novel views of dynamic objects from the asset bank, and

3) composes and blends the rendered image segments. The

resulting synthetic images are realistic, traffic-aware, and

geometrically consistent, allowing our approach to scale

to complex use cases. We demonstrate two such impor-

tant applications: long-range realistic video simulation

across multiple camera sensors, and synthetic data gen-

eration for data augmentation on downstream segmentation

tasks. Please check https://tmux.top/publication/geosim/ for

high-resolution video results.

1. Introduction

Walking along an empty pavement on a silent Sunday

morning, one can easily fantasize how busy it could look dur-

ing rush hour on a weekday, or how a parked car might look

when driving on a different street. Humans are capable of

*Equal Contribution

recreating the experience of visually perceiving objects and

scenes to generate new visual data in their minds. Such an

ability allows us to formulate novel scenarios and synthesize

events in our heads without experiencing it directly.

Researchers have devoted significant effort towards en-

hancing computers with the capability of creating pictures by

replicating visual content [68]. This brings immense value

to many industries, such as film making, robot simulation,

augmented reality, and teleconferencing. In the literature,

two main paradigms exist: computer graphics approaches

and image editing methods. Computer graphics models the

image generation process with physics, by first creating a

virtual 3D world and then mimicking how light is transmitted

within the world to produce a realistic scene rendering.

To produce visually appealing results, physics-based

rendering requires a significant amount of computing re-

sources, costly manual asset creation, and physical modeling

[1]. Images produced by existing real-time rendering en-

gines [22, 53, 19], still have a significant realism gap, reduc-

ing their impact in robot simulation and data augmentation

for training. Data-driven image editing methods such as

image composition [38, 43, 16, 20, 5] and generative image

synthesis [72, 75, 71, 11, 35, 56] have received significant

attention over the past few years. They focus on pushing

realism through generative models trained from large-scale

visual data. However, most of the efforts do not correspond

to an underlying realistic 3D world, and as a consequence,

the generated 2D contents are not directly useful for applica-

tions such as 3D gaming and robot simulation.

In this paper, we propose GeoSim, a realistic image manip-

ulation framework that inserts dynamic objects into existing

videos. GeoSim exploits a combination of both data-driven

approaches and computer graphics to generate assets in-

expensively while maintaining high visual quality through

physically grounded simulation. In particular, by leveraging

low-cost bounding box annotations and sensor data captured

7230

Input Video Output Simulated Video
Realistic Traffic-aware Geometrically Consistent

Add New Car

Figure 1: Realistic video simulation via geometry-aware composition for self-driving. We proposed a novel data-driven

image manipulation approach that inserts dynamic objects into existing videos. Our resulting synthetic video footages are

highly realistic, layout-aware, and geometrically consistent, allowing image simulation to scale to complex use cases.

by a self-driving fleet driving around multiple U.S. cities,

GeoSim builds a fully-textured large-scale 3D assets bank.

While self-driving data is widely available [25, 9, 7, 64], it

is non-trivial to automatically build these assets due to the

sparsity of the 3D observations, occlusions, shadows, limited

viewpoints, and lighting changes. Our asset reconstruction is

robust to these challenges, as we ensure consistency across

multiple observations in time and learn a strong shape prior

to regularize our assets. GeoSim then exploits the 3D scene

layout (from high-definition (HD) maps and LiDAR data) to

add vehicles in plausible locations and make them behave

realistically by considering the full scene. Finally, using this

new 3D scene, GeoSim performs image-based rendering to

properly handle occlusions, and neural network-based image

in-painting to ensure the inserted object seamlessly blends

in by filling holes, adjusting color inconsistencies due to

lighting changes, and removing sharp boundaries.

Using GeoSim, our resulting synthetic images and video

footages are realistic, dynamically plausible, and geometri-

cally consistent. We showcase two important applications:

long-range realistic video simulation across multiple camera

sensors and synthetic labeled data generation for training

self-driving perception algorithms. Our approach outper-

forms prior work on both qualitative and quantitative realism

metrics. We also see significant gains on perception perfor-

mance when leveraging GeoSim images. These experiments

suggest the potential of GeoSim for a plethora of applica-

tions, such as realistic safety verification, data augmentation,

Sim2Real, augmented reality, and automatic video editing.

2. Related Work

Simulation for Robot Learning: Sensor simulation has

received wide attention in the literature [60, 19, 59, 2, 61,

62, 6, 17, 74, 41, 62, 47] for its applications in training and

evaluating robotic agents. Sensor simulation systems should

be efficient and scalable in order to enable such applications.

Many automatic approaches [61, 62, 17, 74, 41] have been

proposed to generate indoor environments. Unconstrained

outdoor scenes such as the urban driving setting tackled here

bring additional challenges due to the scale of the scene,

weather, lighting, presence of fast moving objects, and large

viewpoint changes arising from sensor motion. In the con-

text of autonomous driving, simulation engines [19, 60, 59]

based on rendered 3D models allow the combinatorial gen-

eration of scenarios with varying configurations of vehicle

attributes, traffic, and weather conditions. However, these

methods often have limited diversity in scene content due

to the manual design of 3D assets and still have a Real2Sim

gap. Data-driven sensor simulation offers a scalable alter-

native that can capture the complexity of the real world.

Many methods [46, 23, 67, 76, 4, 52] have been proposed

to directly leverage real-world data for sensor simulation

in the autonomous driving domain, typically by augment-

ing existing recorded data to generate corresponding sensor

measurements for novel scene configurations. However, pre-

vious works either focus on LiDAR [52, 23, 67], rely on

CAD model registration, constraining the set of dynamic ob-

jects that can be simulated [46], or require additional effort

to scale to high-resolution images [76]. In contrast, we com-

bine data-driven simulation techniques with the image-based

rendering techniques in simulation engines. This enables us

to construct a scalable, geometrically consistent, and realistic

camera simulation system.

Image Synthesis and Manipulation: Image synthesis

and manipulation methods offer another route to sensor sim-

ulation. Existing work mainly focused on generating 2D

images from intermediate representations including scene

graphs [35, 30], surface normal maps [72], semantic segmen-

tations [32, 82, 11, 71, 58, 56, 54], and images with different

styles [37]. These methods create high-resolution images but

with noticeable artifacts in texture and object shape. Rather

than generating the full image in one shot, [49, 29, 44] uti-

lize a conditional image generator for scene manipulation.

In particular, [49] proposed a spatial-transformer GAN that

overlays the target objects on top of existing scene layouts

by iteratively adjusting 2D affine transformations. [29] in-

troduced a hierarchical image generation pipeline that is

capable of inserting and removing one object at a time. This

7231

M
a

x
P

o
o

le
d

M
LP⨂

PointNet

Renderer 𝜉0
𝜉𝑖

D
e

fo
rm

a
ti

o
n

s

ẟ
V

Mean Shape

Predicted Shape

−
−

−

Losses (predicted, GT)

Chamfer (
),)

Figure 2: Realistic 3D assets creation. Left: multi-view multi-sensor reconstruction network; Right: 3D asset samples. For

each sample we show one of the source images and the 3D mesh.

improves realism, but using purely a network-based image

synthesis approach has difficulty handling complex physics

such as lighting changes. [5] attempts to combine data driven

approaches with graphics knowledge, using an image-based

neural renderer and image decomposition to improve the

synthetic result. Our work builds on this direction of leverag-

ing graphics with real world data. We perform image-based

rendering and neural in-painting to adjust for differences

between the original image and the image texture of the

inserted actor. Furthermore, GeoSim is 3D-layout-aware,

allowing for controllable and realistic scene modification.

Video Synthesis and Manipulation: Image simulation

alone is insufficient for generating new scenarios with realis-

tic video. One way prior works have extended image synthe-

sis approaches to video generation is by including the past

and adding regularization to ensure temporal consistency for

realistic object motion. Conditional video generation meth-

ods [70, 51, 8, 24] take sequential semantic masks, depth

maps or trajectory pose data as inputs, which can then be

semantically modified to generate the current video frame.

[21] performs 2D-aware image composition via generative

modeling of objects and learned dynamics. Automatic video

manipulation approaches [45, 31] insert foreground objects

or object videos into existing videos in a seamless manner.

Unlike most prior work, our image-composition approach is

3D-layout-aware and handles occlusions. Thus, by combin-

ing our image composition with automatic trajectory gener-

ation methods [63, 66], we easily extend to automatic and

scalable controllable video simulation with high realism.

3D Reconstruction and View Synthesis: Our neural

network-based 3D asset creation step reconstructs 3D shape

from camera imagery and LiDAR in order to synthesize

novel views of dynamic objects. View synthesis and 3D re-

construction are well-studied open problems [68], with vary-

ing approaches on the relationship between geometry and

appearance and possible geometric representations. Image-

based rendering methods [27] focus on combining 2D tex-

tures to directly render novel views. Appearance flow-based

approaches [81, 55, 65] seek to learn unconstrained pixel-

level displacements, whereas [13, 83] encode geometric in-

formation in latent representations and [36] takes advantage

of strong shape priors. Recently, advancements in differ-

entiable rendering [50, 39] and open-source libraries have

enabled classical graphics rendering to serve as an optimiz-

able module, allowing for better learning of 3D and visual

representations [12, 79].

3. Realistic 3D Assets Creation

In this paper we propose a novel image manipulation ap-

proach that inserts dynamic objects into an existing video

footage and generates a high-quality video of the augmented

scene that is geometrically and semantically consistent with

the scene. Key to the success of such an approach is the

availability of realistic 3D assets that contain accurate pose,

shape and texture. Here we argue that rather than using

artists to create these assets, we can leverage data captured

by self-driving vehicles to reconstruct the objects around us.

This is a much more scalable approach, as many self-driving

datasets are available [9, 64, 25], each containing many thou-

sands of unique assets that could potentially be reconstructed.

In Sec. 3.1 we first describe how we leverage both LiDAR

and camera sensor data from multiple viewpoints to gener-

ate realistic 3D vehicle assets using an asset reconstruction

network. Sec. 3.2 describes our self-supervised learning

procedure to train the network.

3.1. Multi­Sensor 3D Asset Reconstruction

Reconstructing 3D dynamic objects in the wild is chal-

lenging: dynamic objects are often partially observed due

to the sparsity of the sensor observations and occlusions,

they are seen from a limited set of viewpoints, and they ap-

pear distorted due to lighting and shadows. To tackle these

challenges, we propose a novel, learning-based, multi-view,

multi-sensor reconstruction approach for 3D dynamic ob-

jects that does not require any ground-truth 3D-shape for

training. Instead, we exploit weak annotations in the form

of 3D bounding boxes, which are readily available in most

self-driving datasets.

More formally, let {Bi,j}∀j be the set of 3D bound-

ing boxes where the i-th object is visible over j views in

the recorded snippet. Let {Ii,j}∀j be the associated set of

cropped images, and {Xi,j}∀j be the associated set of li-

7232

Sampling Add Object IDM

3D-Aware Scene Representation Collision-Aware Placement Modified Scene Updated Scene

New Placement Object Bank New Mesh Executed Motion
Video Simulation

Figure 3: 3D-aware object placement, segment retrieval, and temporal simulation.

dar points recorded inside {Bi,j}, transformed to a single

canonical frame and let Xi be the set of aggregated LiDAR

points across all views. Our 3D reconstruction network then

processes the LiDAR points and image inputs in two streams

that are later fused to produce the shape of the object. We

refer the reader to Fig. 2 for an illustration. We represent

the shape as a 3D mesh Mi = {Vi,Fi} where Vi and

Fi are the faces and vertices of the mesh, respectively. In

addition, we also store {Ii,j ,Si,j}∀j to encode object appear-

ance, where Si,j is the extracted object’s silhouette obtained

from a pre-trained instance segmentation model [40]. We

use this later on to perform novel-view warping.

Network Architecture: Our backbone consists of two

submodules. A convolutional network takes each cropped

camera image as input and outputs a corresponding feature

map. The feature maps from multiple cameras are then aggre-

gated into a one-dimensional latent representation using max-

pooling. A similar latent representation is extracted from

the input LiDAR point cloud using a PointNet network [57].

The LiDAR and camera features are then passed through

an MLP to output the final shape. Instead of employing a

learned PCA shape space from CAD models to predict the

shape of cars [42], we take inspiration from [36] and param-

eterize the 3D shape as a category-specific canonical mean

shape with per-vertex deformations. This parameterization

encodes a categorical prior and ensures the completeness of

the shape under partial observations.

3.2. Self­Supervised Learning

Note that we do not have supervision about the shape.

We thus train our approach end-to-end in an self-supervised

manner to obtain the parameters of the reconstruction net-

work and the mean shape. Our training objective encodes

the agreement between the 3D shape and the camera and

LiDAR observations, as well as a regularization term.

ℓtotal =
∑

i

{ℓsil(Mi;Pi, Ii) + ℓlidar(Mi;Xi) + ℓreg(Mi)}

where i ranges over all the training objects. The silhouette

loss measures the consistency between the 2D silhouette

(automatically generated using the state-of-the-art object

segmentation method PointRend [40]) and the silhouette of

the rendered 3D shape.

ℓsil(Mi;Pi, Ii) =
∑

j

‖Si,j − τ(Mi,j,Pi,j)‖
2

2

where Si,j ∈ R
H×W is the 2D silhouette, j ranges over

multiple views, and τ(M,P) is a differentiable neural ren-

dering operator [12] that renders a differentiable mask on the

camera image given a projection matrix P. The LiDAR loss

represents the consistency between the accumulated LiDAR

point cloud and the mesh vertices, defined as the asymmetric

Chamfer distance

ℓlidar(Mi,Xi) =
∑

x∈Xi

min
v∈Vi

‖x− v‖2
2

In addition, we also minimize a set of regularizers to enforce

prior knowledge over the predicted 3D shape, namely local

smoothness on the vertices as well as normals. This includes

1) a Laplacian regularization which preserves local geometry

and prevents intersecting faces; 2) mesh normal regulariza-

tion which enforces smoothness of local surfaces; 3) edge

regularization which penalizes long edges. Please refer to

supp. material for details.

4. Geometry-Aware Image Simulation

Here we describe our image simulation by composition

approach that places novel objects into an existing 3D scene

and generates a high-quality video sequence of the composi-

tion. Our approach takes as input camera video footage,

LiDAR point clouds, and an HD map in the form of a

lane graph and automatically outputs a video with novel

objects inserted into the scene. Note that the input sensory

data and HD maps we employ are readily available in most

self-driving platforms, which are the application domain we

tackle in this paper. Importantly, our simulation takes into

account both geometric occlusions by other actors and the

background, plausibility of the locations and motions as well

as the interactions with other dynamic agents and thus avoids

collision for the newly inserted objects.

Towards this goal, we first infer the location of all objects

in the scene by performing 3D object detection and tracking

[48]. For each new object to be inserted we select where

to place it as well as which asset to use based on the HD

7233

map and the existing detected traffic. We then utilize an

intelligent traffic model for our newly placed object such

that its motion is realistic, takes into account the interactions

with other actors and avoids collision. The output of this

process defines the new scenario to be rendered. We then

use a novel-view rendering with 3D occlusion reasoning

w.r.t. all elements in the scene, to create the appearance of

the novel objects in the new image. Finally, we utilize a

neural network to fill in the boundary of the inserted objects,

create any missing texture and handle inconsistent lighting.

Fig. 1 outlines our approach.

4.1. Scenario Generation

We want to place new objects in existing images such that

they are plausible in terms of their scale, location, orientation

and motion. Towards this goal, we design a 3D sampling

procedure, which takes advantage of the priors we have about

how vehicles behave in our cities. Note that it is difficult to

achieve similar levels of realism with 2D object insertion.

We thus exploit HD maps that contain the location of the

lanes in bird’s eye view (BEV), and parameterize the object

placement as a tuple (x, y, θ) defining the object center and

orientation in BEV, which we later convert to a 6DoF pose

using the local ground elevation.

Note that our object samples should have realistic physi-

cal interactions with existing objects, respect the flow of traf-

fic, and be visible in the camera’s field of view. To achieve

this, we randomly sample a placement (x, y) from the lane

regions lying within the camera’s field of view and retrieve

the orientation from the lane. We reject all samples that

result in collision with other actors or background objects.

The aforementioned process provides the placement of the

object in the initial frame. To simulate plausible placements

over time for video simulation, we use the Intelligent Driver

Model (IDM) [63, 66] fitted to a kinematic model follow-

ing [26], to update the simulated object’s state for realistic

interactions with surrounding traffic. Fig. 3 depicts the full

procedure of placement and kinematics simulation.

So far we have selected where to place an object and how

is going to move, but we still need to select which object

to place. In order to minimize the artifacts when rendering

our assets, we propose to retrieve objects from the asset

bank that were viewed with similar viewpoints and distance

to the camera in the original footage. The former avoids

the need to deal with large unseen object regions while the

latter avoids utilizing assets that have been captured at lower

resolution. Please refer to the supp. for the specific scoring

criteria. Objects are then sampled (as opposed to a hard

max) according to a categorical distribution weighted by

their inverse score. Once a segment is retrieved for a desired

placement, we perform collision checking using the retrieved

object shape to ensure that the placement is valid.

4.2. Occlusion­Aware Neural Rendering

Now that we have selected a source object and its cor-

responding camera image based on the segment retrieval

mechanism defined above, we proceed to render this source

object into the target scene. Since the object’s target pose

might differ from the original observed poses, we cannot

simply paste the image segment from the source to the target.

Thus we proposed to utilize the asset’s 3D shape to warp the

source to the novel target view.

Novel-view Warping: Let M be the selected object’s 3D

mesh, Is be the source object’s camera image, and Ps/Pt

be the source/ target camera matrices. We first render Ms at

the selected target viewpoint to generate the corresponding

target depth map, Dt. Then using the rendered depth map

and source camera image Is, we generate the object’s 2D

texture map using the inverse warping operation [69, 33] as:

It = Is(π(π
−1(Dt,Pt),Ps)) , where Dt = ψ(M,Pt),

ψ is a differentiable neural renderer [12] that produces a

depth image given the 3D mesh M and camera matrix P; π
is the perspective projection and π−1 is the inverse projection

that takes the depth image and camera matrix as input and

outputs the 3D points.

Shadow Generation: Inserting an object into a scene will

not only change the pixels where the object is present, but can

also change the rest of the scene (i.e. shadows and ambient

occlusion). We improve the perceptual quality of the image

by approximating these effects with image based rendering.

While recent works [73, 78] learn shadow synthesis from

scene context with a neural network, we render shadows

with a graphics engine as geometry is available. To estimate

the shadow casted by each inserted object, we construct a

virtual scene with the inserted object and a ground plane and

exploit image-based rendering [18], where the environment

light comes from a real-world HDRI. We render the scene

with and without the inserted objects, and add the shadow

by blending in the background image intensities with the

ratio of the two rendered images intensities. As lighting

estimation by manually waving a shadow-casting stick [15]

is not applicable, we select a cloudy HDRI to cast shadows.

In practice, we find this produces reasonable results. Please

refer to the supp. for illustration.

Occlusion Reasoning: An inserted object must respect

occlusions from the existing scene elements. Vegetation,

fences, and other dynamic objects, for example, may have

irregular or thin boundaries, complicating occlusion reason-

ing. We employ a simple strategy to determine occlusions

of the inserted objects and their shadow in the target scene

by comparing their depth w.r.t the depth map of the existing

3D scene (see Fig. 4). To achieve this, we first estimate the

target image’s dense depth map through a depth completion

7234

Background Scene + Object Dense Depth Proposal Canvas SynNet Final Result
Figure 4: Geometry-aware composition with occlusion reasoning followed by an image synthesis module.

network [14]. The input is the RGB image and a sparse

depth map acquired by projecting the LiDAR sweep onto the

image. Using the rendered depth of the object, the occlusion

mask is then computed by evaluating for each object pixel if

the target image’s depth is smaller than the corresponding

object pixel’s depth.

Post-Composition Synthesis: After occlusion reasoning,

the rendered image may still look unrealistic as the in-

serted segment may have inconsistent illumination and color-

balancing w.r.t the target scene, discrepancies at the bound-

aries, and missing regions that were not available in the

source view. To solve these issues, we leverage an image

synthesis network to naturally blend the source segment to

the target scene (see Fig. 4). Our network takes the target

background image Bt, rendered target object It as well as

the object binary silhouette St as input, and outputs the final

image that naturally composites the background and ren-

dered object. Our synthesis network architecture is similar

to [77], which is a generative image in-painting network

except that we take the rendered object mask as additional

input. Our network is trained using images with instance seg-

mentation masks inferred by [40] in the target scene. Data

augmentation, including random occlusion, color jittering,

random contrast and saturation is applied to mimic the dif-

ferences among real-world images. Two loss functions are

adopted, namely perceptual loss [34] to ensure the generated

output’s fidelity, as well as GAN loss to boost the realism

of the in-painted region as well as the lighting consistency.

Please refer to supp. for more details.

5. Experimental Evaluation

In this section we first introduce our experimental setting.

We then compare GeoSim against a comprehensive set of

image simulation baselines in visual realism through percep-

tual quality scores and human A/B tests, and in downstream

tasks such as semantic segmentation. We also showcase

our method generating multi-camera and temporally consis-

tent video simulation. While our method can be adapted to

handle most rigid objects, in our experiments we showcase

vehicles, the most relevant objects in self driving.

5.1. Experimental Details

We utilize two large-scale self-driving datasets (Urban-

Data and Argoverse [9]) to showcase GeoSim.

UrbanData: We collected a real-world dataset by having

a fleet of self-driving cars drive in two major cities in North

America. We labeled 16,500 snippets, where each snippet

contains 25 seconds (~250 frames, sampled at 10Hz) of

video with 7 cameras, a 64-beam LiDAR sensor, and HD

maps. We use 4500 for reconstruction and synthesis network

training, 7000 for depth completion training, and 5000 for

perceptual quality and downstream evaluation. Please see

supp. for the full breakdown.

Argoverse: We also evaluate on the Argoverse training

split which contains 65 snippets from 2 different cities. We

use the provided HD maps for vehicle placement. We di-

rectly adopt the 3D assets built from UrbanData, as Argo-

verse is too small for diverse asset creation. We train our

image synthesis network on Argoverse, where 80k frames

are sampled for training and 16k are sampled for evaluation.

Asset Bank Creation: We created automatically a large

object bank of ~ 8000 vehicles, from cameras, LiDAR data

and 3D bounding boxes using our 3D reconstruction network

on UrbanData. Each successfully reconstructed object is

registered in our 3D asset bank, with its 1) 3D mesh; 2)

images; and 3) object pose in ego-vehicle-centric coordinates.

We use a pre-trained instance segmentation to get the inferred

instance mask [40], a LiDAR detector [48] to acquire other

actors’ bounding boxes for collision avoidance (Sec. 4.1),

and a depth completion network [14] to get dense depth for

occlusion reasoning (Sec. 4.2).

Baselines: We compare our method against several deep

learning based end-to-end 2D image synthesis and augmen-

tation baselines [44, 71, 29, 56]. Unlike GeoSim, these

methods cannot perform placement directly and require an

input mask based on the object’s shape and pose that denotes

the area to synthesize. We therefore use [44] to insert object

instances at the semantic level in a background semantic im-

age. We then generate high resolution images from this aug-

mented scene representation with three different approaches:

(1) Holistic image generation ("SPADE”): we use the state-

of-the-art conditional image generation model SPADE [56]

to generate the entire image given the semantic mask. (2)

Retrieval-based generation ("Cut-Paste”): given the new

object’s 2D mask, we retrieve the most similar example from

a bank of 2D object images. The similarity is defined using

7235

Figure 5: Qualitative comparison of image simulation approaches.

Figure 6: Qualitative comparison of image simulation

approaches on Argoverse dataset.

semantic mask IOU. The rest of the background comes from

the corresponding real image; and (3) Guided semantic im-

age editing ("Guided-Editing”): we use [29] to in-paint the

tight bounding box region of the added object. Additionally,

we compare against a graphics-based CAD model insertion

baseline ("CAD”), in spirit of [3] with the following differ-

ences: 1) we use our 3D placement in order to produce more

realistic layout-aware insertion; 2) unlike the original work,

we do not have environment lighting maps and instead use a

HDRI captured on a cloudy day.

5.2. Perceptual Quality Evaluation

Human Study: To verify the realism of our approach, we

conduct a human A/B test, where we show a pair of images

generated from different approaches on the same background

image, one from GeoSim and another one from a competing

algorithm. We then ask the human judges to click the one

they believe is more realistic. In total, 13 human judges

participated and labeled ~ 1500 image pairs. Tab. 1 shows

the human preference score for each algorithm, which mea-

sures the percentage of participants who prefer our GeoSim

results over each baseline method. Results on Argoverse are

presented in Tab. 3. The A/B test confirms that our method

produces drastically more realistic images than the baselines.

The minimum p-value in the A/B test is 1.64e-18, demon-

strating statistical significance. Please see the detailed A/B

test interface and instructions in supp.

Perceptual Quality Score: We further use the Fréchet In-

ception Distance (FID) [28] between the synthesized images

and the ground-truth images as an automatic measure of im-

age quality. We report the FID on the full image for GeoSim

and the baselines in Tab. 1. Our method significantly outper-

forms all competing methods on FID.

Qualitative Comparison: Fig. 5 compares simulated im-

ages. Note that GeoSim is significantly more realistic than

the baselines. While one can easily and quickly detect the

added object in other methods due to unrealistic genera-

tion with smeared cars ("SPADE”, "Guided-Editing”), or

geometrically invalid results ("Cut-Paste”), or unrealistic

appearance ("CAD”), one must look closely at GeoSim im-

ages to distinguish the added objects from the real ones. In

Fig. 6, we show qualitative examples on Argoverse, where

GeoSim obtains very high visual quality. This demonstrates

GeoSim’s potential to generalize across datasets.

Effect of Rendering Approach: We evaluate the impor-

tance of using a hybrid rendering module proposed in our

method, compared to using solely physics-based rendering

or 2D synthesis with 3D placement constant across all ap-

proaches). As shown in Tab. 2, our proposed geometry-aware

7236

Method Human Score (%) FID

SPADE [56] 99.3 43.2

Guided Editing [29] 94.3 20.3

Cut-Paste [20] 98.5 22.1

CAD [2] 94.3 17.3

GeoSim - 14.3

Table 1: Perceptual quality evaluation. Human score: %

of participants who prefer our GeoSim results over baseline.

Approach Shadow Human Score (%) FID

Physics Yes 94.2 17.3

2D Synthesis - 75.7 13.7

Geo Synthesis No 71.9 13.7

Geo Synthesis Yes - 14.3

Table 2: Ablation on rendering options for GeoSim. Hu-

man score: % of participants who prefer our GeoSim results

over baseline.

Method Human Score (%) FID

CAD 84.0 28.3

GeoSim - 24.5

Table 3: Results on Argoverse. Human score: % of partici-

pants who prefer our GeoSim results over baseline.

synthesis significantly outperforms all other approaches on

human scores. Additionally, enhancing hybrid-rendering

with shadows significantly boosts the realism for humans,

but such improvements are not reflected in FID score. This

suggests there still exists a gap between computational per-

ceptual quality measurements and humans’ criteria. Please

see supp. for ablation of other GeoSim components.

Video Simulation: We showcase in the supp. video

GeoSim’s ability to simulate highly realistic and temporally

consistent video for multiple cameras.

Failure Cases: While most GeoSim-simulated images are

high-quality, there is room for improvement. We find four

major failure cases: (1) incorrect occlusion relationships in

a complex scene, (2) irregular reconstructed mesh, (3) in-

accurate object pose, usually caused by map error and (4)

illumination failure due to illumination differences between

rendered segment and target scene. Besides, we also notice

blank pixel artifacts in long range video simulation, which

are caused by inverse warping textures from source view-

points which are far from the target viewpoint. Please refer

to the supp. for qualitative examples.

5.3. Downstream Perception Task

We now investigate data augmentation, where we use

labeled real data combined with GeoSim to get performance

Method PSPNet [80] DeepLabv3 [10]

mIOU carIOU mIOU carIOU

Real 93.5 87.8 94.0 88.7

Real+GeoSim 95.3 91.2 94.2 89.2

Table 4: Sim2Real on semantic segmentation.

Background Augmented Augmented Label

Figure 7: GeoSim for data augmentation. Left: image

before augmentation. Middle: image after augmentation.

Right: augmented semantic annotation.

gains, without the cost of large scale annotations (as seen

in Fig. 7). We first train a segmentation model on labeled

real data with around 2000 images. We then use GeoSim

to augment these images with inserted vehicles, obtaining

9879 additional training examples in total. We re-train the

segmentation model on both real and augmented data for

the same number of iterations. We evaluate the performance

on real data and report the results on Tab. 4. With these

additional training images, we can further boost perception

performance by 3.4% (or 0.4% on DeepLabv3 [10]) for car

category and 1.8% (or 0.2% on DeepLabv3 [10]) for overall

mIOU on PSPNet [80]. Importantly we can show consistent

improvements across two segmentation models.

6. Conclusion

In this work we presented a novel geometry-guided sim-

ulation procedure for flexible generation and rendering of

synthetic scenes. Not only is our approach the first of its kind

to fully take into consideration physical realism for dynamic

object placement into images, it also bypasses the need for

manual 3D asset creation and achieves greater visual realism

than competing alternatives. Moreover, we demonstrated

improvements in downstream tasks through applications of

our technique to semantic segmentation. There are many

exciting follow-up directions opened up by this work such

as sim2real, autonomous system evaluation, video editing,

etc. and we look forward to future extensions of GEOSIM.

7237

References

[1] Corona renderer, 2020. 1

[2] Hassan Abu Alhaija, Siva Karthik Mustikovela, Lars

Mescheder, Andreas Geiger, and Carsten Rother. Augmented

Reality Meets Computer Vision : Efficient Data Generation

for Urban Driving Scenes. arXiv, 2017. 2, 8

[3] Hassan Abu Alhaija, Siva Karthik Mustikovela, Lars

Mescheder, Andreas Geiger, and Carsten Rother. Augmented

reality meets computer vision: Efficient data generation for

urban driving scenes. IJCV, 2018. 7

[4] Alexander Amini, Igor Gilitschenski, Jacob Phillips, Julia

Moseyko, Rohan Banerjee, Sertac Karaman, and Daniela

Rus. Learning Robust Control Policies for End-to-End Au-

tonomous Driving From Data-Driven Simulation. RA-L, 2020.

2

[5] Anand Bhattad and David A Forsyth. Cut-and-paste neural

rendering. arXiv, 2020. 1, 3

[6] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei

Bai, Matthew Kelcey, Mrinal Kalakrishnan, Laura Downs,

Julian Ibarz, Peter Pastor, Kurt Konolige, et al. Using simu-

lation and domain adaptation to improve efficiency of deep

robotic grasping. In ICRA, 2018. 2

[7] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,

Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-

ancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal

dataset for autonomous driving. arXiv, 2019. 2

[8] Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A

Efros. Everybody dance now. In CVPR, 2019. 3

[9] Ming-Fang Chang, John W Lambert, Patsorn Sangkloy, Jag-

jeet Singh, Slawomir Bak, Andrew Hartnett, De Wang, Peter

Carr, Simon Lucey, Deva Ramanan, and James Hays. Argov-

erse: 3d tracking and forecasting with rich maps. In CVPR,

2019. 2, 3, 6

[10] Liang-Chieh Chen, George Papandreou, Florian Schroff, and

Hartwig Adam. Rethinking atrous convolution for semantic

image segmentation. arXiv, 2017. 8

[11] Qifeng Chen and Vladlen Koltun. Photographic Image Syn-

thesis with Cascaded Refinement Networks. arXiv, 2017. 1,

2

[12] Wenzheng Chen, Jun Gao, Huan Ling, Edward Smith, Jaakko

Lehtinen, Alec Jacobson, and Sanja Fidler. Learning to pre-

dict 3d objects with an interpolation-based differentiable ren-

derer. In NIPS, 2019. 3, 4, 5

[13] Xu Chen, Jie Song, and Otmar Hilliges. Monocular Neu-

ral Image Based Rendering with Continuous View Control.

arXiv, 2019. 3

[14] Yun Chen, Bin Yang, Ming Liang, and Raquel Urtasun. Learn-

ing joint 2d-3d representations for depth completion. In ICCV,

2019. 6

[15] Yung-Yu Chuang, Dan B Goldman, Brian Curless, David H.

Salesin, and Richard Szeliski. Shadow matting and composit-

ing. ACM Trans. Graph., 2003. 5

[16] Wenyan Cong, Jianfu Zhang, Li Niu, Liu Liu, Zhixin Ling,

Weiyuan Li, and Liqing Zhang. Dovenet: Deep image harmo-

nization via domain verification. In CVPR, 2020. 1

[17] Erwin Coumans and Yunfei Bai. Pybullet, a python mod-

ule for physics simulation for games, robotics and machine

learning. GitHub repository, 2016. 2

[18] Paul Debevec. Rendering synthetic objects into real scenes:

Bridging traditional and image-based graphics with global il-

lumination and high dynamic range photography. In Proceed-

ings of the 25th Annual Conference on Computer Graphics

and Interactive Techniques, 1998. 5

[19] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio

Lopez, and Vladlen Koltun. Carla: An open urban driving

simulator. In Conference on robot learning, 2017. 1, 2

[20] Debidatta Dwibedi, Ishan Misra, and Martial Hebert. Cut,

paste and learn: Surprisingly easy synthesis for instance de-

tection. In ICCV, 2017. 1, 8

[21] Sébastien Ehrhardt, Oliver Groth, Aron Monszpart, Martin

Engelcke, Ingmar Posner, Niloy Mitra, and Andrea Vedaldi.

Relate: Physically plausible multi-object scene synthesis us-

ing structured latent spaces. NeurIPS, 2020. 3

[22] Epic Games. Unreal engine. 1

[23] Jin Fang, Dingfu Zhou, Feilong Yan, Tongtong , Feihu Zhang,

Yu Ma, Liang Wang, and Ruigang Yang. Augmented LiDAR

Simulator for Autonomous Driving. arXiv, 2019. 2

[24] Oran Gafni, Lior Wolf, and Yaniv Taigman. Vid2game: Con-

trollable characters extracted from real-world videos. arXiv,

2019. 3

[25] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel

Urtasun. Vision meets robotics: The kitti dataset. IJRR, 2013.

2, 3

[26] J Gonzales, F Zhang, K Li, and F Borrelli. Autonomous

drifting with onboard sensors. In Advanced Vehicle Con-

trol: Proceedings of the 13th International Symposium on

Advanced Vehicle Control (AVEC16), 2016. 5

[27] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,

George Drettakis, and Gabriel Brostow. Deep blending for

free-viewpoint image-based rendering. TOG, 2018. 3

[28] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-

hard Nessler, and Sepp Hochreiter. Gans trained by a two

time-scale update rule converge to a local nash equilibrium.

arXiv, 2017. 7

[29] Seunghoon Hong, Xinchen Yan, Thomas Huang, and Honglak

Lee. Learning Hierarchical Semantic Image Manipulation

through Structured Representations. arXiv, 2018. 2, 6, 7, 8

[30] Seunghoon Hong, Dingdong Yang, Jongwook Choi, and

Honglak Lee. Inferring semantic layout for hierarchical text-

to-image synthesis. In CVPR, 2018. 2

[31] Abdul-Wahab Sami Ibrahim and Sarab Mhamed Taher. In-

serting virtual static object with geometry consistency into

real video. In Journal of Physics: Conference Series, 2020. 3

[32] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros.

Image-to-image translation with conditional adversarial net-

works. In CVPR, 2017. 2

[33] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and

Koray Kavukcuoglu. Spatial Transformer Networks. arXiv,

2016. 5

[34] Justin Johnson, Alexandre Alahi, and Fei-Fei Li. Perceptual

losses for real-time style transfer and super-resolution. CoRR,

2016. 6

7238

[35] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image genera-

tion from scene graphs. In CVPR, 2018. 1, 2

[36] Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, and

Jitendra Malik. Learning Category-Specific Mesh Reconstruc-

tion from Image Collections. arXiv, 2018. 3, 4

[37] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks. In

CVPR, 2019. 2

[38] Kevin Karsch, Varsha Hedau, David Forsyth, and Derek

Hoiem. Rendering synthetic objects into legacy photographs.

TOG, 2011. 1

[39] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-

ral 3D Mesh Renderer. arXiv, 2017. 3

[40] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Gir-

shick. Pointrend: Image segmentation as rendering. In CVPR,

2020. 4, 6

[41] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,

Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Ab-

hinav Gupta, and Ali Farhadi. Ai2-thor: An interactive 3d

environment for visual ai. arXiv, 2017. 2

[42] Abhijit Kundu, Yin Li, and James M. Rehg. 3d-rcnn: Instance-

level 3d object reconstruction via render-and-compare. In

CVPR, 2018. 4

[43] Jean-François Lalonde, Derek Hoiem, Alexei A Efros,

Carsten Rother, John Winn, and Antonio Criminisi. Photo

clip art. TOG, 2007. 1

[44] Donghoon Lee, Sifei Liu, Jinwei Gu, Ming-Yu Liu, Ming-

Hsuan Yang, and Jan Kautz. Context-aware synthesis and

placement of object instances. In NIPS, 2018. 2, 6

[45] D. Lee, T. Pfister, and M. Yang. Inserting videos into videos.

In CVPR, 2019. 3

[46] Wei Li, Chengwei Pan, Rong Zhang, Jiaping Ren, Yuexin

Ma, Jin Fang, Feilong Yan, Qichuan Geng, Xinyu Huang,

Huajun Gong, Weiwei Xu, Guoping Wang, Dinesh Manocha,

and Ruigang Yang. AADS: Augmented Autonomous Driving

Simulation using Data-driven Algorithms. Science Robotics,

2019. 2

[47] Xueting Li, Sifei Liu, Kihwan Kim, Xiaolong Wang, Ming-

Hsuan Yang, and Jan Kautz. Putting humans in a scene:

Learning affordance in 3d indoor environments. In CVPR,

2019. 2

[48] Ming Liang, Bin Yang, Wenyuan Zeng, Yun Chen, Rui Hu,

Sergio Casas, and Raquel Urtasun. Pnpnet: End-to-end per-

ception and prediction with tracking in the loop. In CVPR,

2020. 4, 6

[49] Chen-Hsuan Lin, Ersin Yumer, Oliver Wang, Eli Shechtman,

and Simon Lucey. ST-GAN: Spatial Transformer Generative

Adversarial Networks for Image Compositing. arXiv, 2018. 2

[50] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft

Rasterizer: A Differentiable Renderer for Image-based 3d

Reasoning. arXiv, 2019. 3

[51] Arun Mallya, Ting-Chun Wang, Karan Sapra, and Ming-Yu

Liu. World-consistent video-to-video synthesis. In ECCV,

2020. 3

[52] Sivabalan Manivasagam, Shenlong Wang, Kelvin Wong,

Wenyuan Zeng, Mikita Sazanovich, Shuhan Tan, Bin Yang,

Wei-Chiu Ma, and Raquel Urtasun. Lidarsim: Realistic lidar

simulation by leveraging the real world. CVPR, 2020. 2

[53] Mark Martinez, Chawin Sitawarin, Kevin Finch, Lennart

Meincke, Alex Yablonski, and Alain Kornhauser. Beyond

grand theft auto v for training, testing and enhancing deep

learning in self driving cars. arXiv, 2017. 1

[54] Sangwoo Mo, Minsu Cho, and Jinwoo Shin. Instagan:

Instance-aware image-to-image translation. arXiv, 2018. 2

[55] Eunbyung Park, Jimei Yang, Ersin Yumer, Duygu Ceylan,

and Alexander C. Berg. Transformation-Grounded Image

Generation Network for Novel 3d View Synthesis. arXiv,

2017. 3

[56] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan

Zhu. Semantic image synthesis with spatially-adaptive nor-

malization. In CVPR, 2019. 1, 2, 6, 8

[57] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification and

segmentation. arXiv, 2016. 4

[58] Xiaojuan Qi, Qifeng Chen, Jiaya Jia, and Vladlen Koltun.

Semi-parametric Image Synthesis. arXiv, 2018. 2

[59] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen

Koltun. Playing for Data: Ground Truth from Computer

Games. arXiv, 2016. 2

[60] German Ros, Laura Sellart, Joanna Materzynska, David

Vazquez, and Antonio M Lopez. The synthia dataset: A large

collection of synthetic images for semantic segmentation of

urban scenes. In CVPR, 2016. 2

[61] Manolis Savva, Angel X Chang, Alexey Dosovitskiy, Thomas

Funkhouser, and Vladlen Koltun. Minos: Multimodal indoor

simulator for navigation in complex environments. arXiv,

2017. 2

[62] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,

Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia Liu,

Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for

embodied ai research. In ICCV, 2019. 2

[63] Jens Schulz, Constantin Hubmann, Julian Löchner, and Dar-

ius Burschka. Interaction-Aware Probabilistic Behavior Pre-

diction in Urban Environments. arXiv, 2018. 3, 5

[64] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien

Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,

Yuning Chai, Benjamin Caine, et al. Scalability in perception

for autonomous driving: Waymo open dataset. In CVPR,

2020. 2, 3

[65] Shao-Hua Sun, Minyoung Huh, Yuan-Hong Liao, Ning

Zhang, and Joseph J Lim. Multi-view to novel view: Synthe-

sizing novel views with self-learned confidence. In ECCV,

2018. 3

[66] Simon Suo, Sebastian Regalado, Sergio Casas, and Raquel

Urtasun. Trafficsim: Learning to simulate realistic multi-

agent behaviors. arXiv, 2021. 3, 5

[67] Abhijeet Tallavajhula, Cetin Mericli, and Alonzo Kelly. Off-

road lidar simulation using data driven terrain primitives. In

ICRA, 2018. 2

[68] Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitz-

mann, Stephen Lombardi, Kalyan Sunkavalli, Ricardo Martin-

Brualla, Tomas Simon, Jason Saragih, Matthias Nießner,

Rohit Pandey, Sean Fanello, Gordon Wetzstein, Jun-Yan

Zhu, Christian Theobalt, Maneesh Agrawala, Eli Shechtman,

Dan B. Goldman, and Michael Zollhöfer. State of the Art on

Neural Rendering. arXiv, 2020. 1, 3

7239

[69] Shubham Tulsiani, Richard Tucker, and Noah Snavely. Layer-

structured 3d scene inference via view synthesis. In ECCV,

2018. 5

[70] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu,

Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-to-video

synthesis. In NeurIPS, 2018. 3

[71] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,

Jan Kautz, and Bryan Catanzaro. High-Resolution Image Syn-

thesis and Semantic Manipulation with Conditional GANs.

arXiv, 2017. 1, 2, 6

[72] Xiaolong Wang and Abhinav Gupta. Generative image mod-

eling using style and structure adversarial networks. In ECCV,

2016. 1, 2

[73] Yifan Wang, Brian Curless, and Steve Seitz. People as Scene

Probes. arXiv, 2020. 5

[74] Fei Xia, Amir R. Zamir, Zhiyang He, Alexander Sax, Jiten-

dra Malik, and Silvio Savarese. Gibson Env: Real-World

Perception for Embodied Agents. In CVPR, 2018. 2

[75] Chao Yang, Xin Lu, Zhe Lin, Eli Shechtman, Oliver Wang,

and Hao Li. High-Resolution Image Inpainting using Multi-

Scale Neural Patch Synthesis. arXiv, 2016. 1

[76] Zhenpei Yang, Yuning Chai, Dragomir Anguelov, Yin Zhou,

Pei Sun, Dumitru Erhan, Sean Rafferty, and Henrik Kret-

zschmar. SurfelGAN: Synthesizing Realistic Sensor Data for

Autonomous Driving. arXiv, 2020. 2

[77] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and

Thomas Huang. Free-Form Image Inpainting with Gated

Convolution. arXiv, 2019. 6

[78] Shuyang Zhang, Runze Liang, and Miao Wang. Shadow-

gan: Shadow synthesis for virtual objects with conditional

adversarial networks. Computational Visual Media, 2019. 5

[79] Yuxuan Zhang, Wenzheng Chen, Huan Ling, Jun Gao, Yinan

Zhang, Antonio Torralba, and Sanja Fidler. Image gans meet

differentiable rendering for inverse graphics and interpretable

3d neural rendering. arXiv, 2020. 3

[80] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid scene parsing network. In

CVPR, 2017. 8

[81] Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik,

and Alexei A. Efros. View Synthesis by Appearance Flow.

arXiv, 2016. 3

[82] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros.

Unpaired image-to-image translation using cycle-consistent

adversarial networks. In ICCV, 2017. 2

[83] Jun-Yan Zhu, Zhoutong Zhang, Chengkai Zhang, Jiajun Wu,

Antonio Torralba, Joshua B. Tenenbaum, and William T. Free-

man. Visual Object Networks: Image Generation with Disen-

tangled 3D Representation. arXiv, 2018. 3

7240

