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inner product Tr(XTS) = Tr(STX), Frobenius norm ∥X∥F = ⟨X, X⟩ 1
2 , trace

The trace is invariant under the similarity transform.
Defn of eigenvalues

Let Sn denote the subspace of n by n symmetric matrices (in Rn×n).

Sn ≃ R
n(n+1)

2

We sort the real eigenvalues

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X)

diag(Sn)→ Rn is a linear transformation

Theorem (Spectral / Schur Decomposition Theorem). For every X ∈ Sn, ∃Q ∈
Rn×n, orthogonal (QTQ = I), such that X = Q diag(λ(X))QT.
In the above spectral decomposition of X, the columns of Q are the eigenvectors of X.
(Note: vectors will be column vectors.)

ej denotes the j-th unit vector.
Let

Q := [q(1)q(2) · · · q(n)]

Xq(j) = Q diag(λ(X)) QTq(j)︸ ︷︷ ︸
=ej , since QT Q=I

= Q diag(λ(X))ej︸ ︷︷ ︸
λj(X)ej

= λj(X) Qej︸︷︷︸
=q(j)

So

∥X∥F =

(
n

∑
j=1

λ2
j (X)

) 1
2

= ∥λ(X)∥2

We can extend p-norms to Sn: for X ∈ Sn,

∥X∥p := sup{∥Xh∥p : ∥h∥p = 1, h ∈ Rn}.

(Side remark: can also define p, q-norms.)
Note ∥X∥2 = maxj∈{1,2,...,n}{

∣∣λj(X)
∣∣}.
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In the course, we’ll mostly deal with symmetric positive semi-definite matrices
and won’t explicitly say they’re symmetric.

Defn of square root: Let X ∈ Sn be positive definite. Every diagonal entry of
D is positive.

X
1
2 := QD

1
2 QT (unique)

Extend to positive semidefinite matrices.

Given X ∈ Sn, if X is not PSD, then ∃h ∈ Rn such that hTXh < 0.

Claim: If X ∈ Sn and p.s.d., then xii = 0⇒ xij = 0∀j ∈ {1, 2, . . . , n}.

Proof. Let X ∈ Sn, PSD, xii = 0. For the sake of reaching a contradiction,
suppose xij = α ̸= 0.

X =


0 · · · α
...

...
α · · · xjj


Consider h := βei + ej, β ∈ R to be chosen later.

hTXh = (βei + ej)
T(βXei + Xej)

= β2 · 0 + 2αβ + xjj −→ can choose β to make this negative

Theorem (Choleski Decomposition). Let X ∈ Sn. Then X is PSD iff ∃B ∈ Rn×n,
lower triangular (Bij = 0, ∀j > i) such that X = BBT.
Proof. Let X ∈ Sn. We will prove the theorem by induction on n.
n = 1: X is PSD ⇐⇒ X ∈ R+. If X is PSD, B =

√
x11 works. If X is not

PSD, then x11 < 0, h = 1 works (i.e. hTXh < 0).
Induction hypothesis: The claim holds for all n ≤ k− 1.
n = k:
If x11 < 0, then h = e1, hTXh = x11 < 0.
If x11 = 0, if X is PSD, by the claim before the theorem, xij = 0, ∀j and we are
done by induction hypothesis. (For certificate of non-PSD, concatenate a 0).
So, we may assume x11 > 0.

X :=
[

x11 xT

x X

]
b :=

1√
x11x

X̃ := X− 1
x11

xxT .
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If X̃ ∈ Sk−1 is PSD, then by induction hypothesis ∃B̃ ∈ R(k−1)×(k−1) lower
triangular s.t. X̃ = B̃B̃T. Then,

X =

[√
x11 0
b B̃

] [√
x11 bT

0 B̃T

]
.

If X̃ is not PSD then ∃h̃ ∈ Rk−1 s.t. h̃TX̃h̃ < 0.

h :=

[
− xT h̃

x11

h̃

]
∈ Rk

Then

hTXh =
(xT h̃)2

x11
− 2

xT h̃
x11

+ h̃TX̃h̃ +
1

x11
(xT h̃)2

= h̃TX̃h̃ < 0.

2 2018-05-03

X =

[√
x11 0
b B̃

] [√
x11 bT

0 B̃T

]

=

[√
x11
b

] [√
x11 bT]+

0 0
0 X̃︸︷︷︸

B̃B̃T


So, we also proved, for every X ∈ Sn

+, ∃h(1), h(2), . . . , h(n) ∈ Rn s.t.

X = h(1)h(1)
T
+ h(2)h(2)

T
+ · · ·+ h(n)h(n)

T
.

(Further, note the first j− 1 entries of h(j) are zero.)

Proposition. Let X ∈ Sn. Then TFAE:

(a) X is p.s.d.

(b) λ(X) ≥ 0

(c) ∃µ ∈ Rn
+ and h(1), h(2), . . . , h(n) ∈ Rn s.t. X = ∑n

i=1 µih(i)h(i)
T

(d) ∃B ∈ Rn×n lower triangular s.t. X = BBT

(e) ∀J ⊆ {1, 2, . . . , n}, det(XJ) ≥ 0 (where XJ := [Xij : i, j ∈ J])

(f) ∀S ∈ Sn
+, ⟨X, S⟩ ≥ 0
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Defn: Sn
++ := the set of positive definite matrices in Sn

Proposition.

(1) Sn
++ = int(Sn

+)

(2) Let X ∈ Sn. Then TFAE:

(a) X is positive definite
(b) λ(X) > 0

(c) ∃µ ∈ Rn
++ and h(1), h(2), . . . , h(n) ∈ Rn linearly independent s.t. X =

∑n
i=1 µih(i)h(i)

T

(d) ∃B ∈ Rn×n nonsingular, lower triangular s.t. X = BBT

(e) ∀k ∈ {1, 2, . . . , n}, det(XJk ) > 0 (where Jk := {1, 2, . . . , k})
(f) ∀S ∈ Sn

+ \ {0}, ⟨X, S⟩ > 0

(g) X ∈ Sn
+ and rank(X) = n

X ∈ Sn is diagonally dominant if Xii ≥ ∑n
j=1,j ̸=i

∣∣Xij
∣∣, ∀i ∈ {1, 2, . . . , n}

X ∈ Sn is strictly diagonally dominant if Xii > ∑n
j=1,j ̸=i

∣∣Xij
∣∣, ∀i ∈ {1, 2, . . . , n}

If X is diagonally dominant then X ∈ Sn
+ (converse is false).

If X is strictly diagonally dominant then X ∈ Sn
++ (converse is false).

∀X ∈ Sn, ∃µ ∈ R s.t. (X + µI) ∈ Sn
+, ∀µ ≥ µ

∀X ∈ Sn, ∃µ ∈ R s.t. (X + µI) ∈ Sn
++, ∀µ > µ

Note that ∀X ∈ Sn
+, ∀ε > 0, (X + εI) ∈ Sn

++.

K ⊆ Rn is a convex cone if

(i) it is a cone (∀x ∈ K, ∀α ∈ R+, αx ∈ K), and

(ii) it is convex (∀u, v ∈ K, ∀λ ∈ [0, 1], λu + (1− λ)v ∈ K) [in the presence of
(i), this is equivalent to ∀u, v ∈ K, (u + v) ∈ K]

A convex set is pointed if it does not contain any lines.

A pointed closed convex cone K ⊆ Rn with nonempty interior is

• self-dual if ∃ an inner-product on Rn such that

K∗ := {s ∈ Rn : ⟨x, s⟩ ≥ 0, ∀x ∈ K}︸ ︷︷ ︸
dual cone of K

= K

A pointed closed convex cone K ⊆ Rn with nonempty interior is homogeneous
if ∀u, v ∈ int(K), ∃L ∈ Aut(K) such that Lu = v, where

Aut(K) := {L : Rn → Rn, linear, nonsingular : L(K) = K}.
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Aut(K): Automorphism group of K

A cone is called symmetric if it is homogeneous & self-dual.

Given a convex set K ⊆ Rn, a ray of K is R := {αx : α ≥ 0} ⊆ K for some
x ∈ K \ {0}.
A ray of K, R is an extreme ray of K if ∀ pairs of R1, R2 of K,

R1 + R2 ⊇ R⇒ either R1 = R or R2 = R, or possibly both

R1 + R2 := {r1 + r2 : r1 ∈ R1, r2 ∈ R2} (Minkowski sum)
For K1 ∈ Rn1 , K2 ∈ Rn2 ,

K1 ⊕ K2 :=
{(

u
v

)
∈ Rn1 ⊕Rn2 : u ∈ K1, v ∈ K2

}
ext(K) denotes the set of normalized extreme rays of cone K
Ext(K) denotes the set of extreme rays of K

Theorem (1.16). Sn
+ is a pointed, closed convex cone with nonempty interior.

Moreover, Sn
+ is homogeneous and self-dual (hence symmetric). The set of

normalized extreme rays of Sn
+ is given by ext(Sn

+) = {hhT : h ∈ Rn, ∥h∥2 = 1}.

Ext(Sn
+) = {{αhhT} : α ≥ 0, hhT ∈ ext(Sn

+)}

Proof. Claim 1: (Sn
+)
∗ = Sn

+. (Recall (Sn
+)
∗ = {S ∈ Sn : ⟨X, S⟩ ≥ 0, ∀X ∈

Sn
+}).

Proof: Let S ∈ Sn. Then S
1
2 exists (and is unique),

∀X ∈ Sn
+, ⟨X, S⟩ = Tr(XS) = Tr(S

1
2 XS

1
2︸ ︷︷ ︸

∈Sn
+

) ≥ 0

Therefore S ∈ (Sn
+)
∗. Hence, (Sn

+)
∗ ⊇ Sn

+.
Now, let Ŝ ∈ (Sn

+)
∗, let h(1), h(2), . . . , h(n) ∈ Rn be eigenvectors of Ŝ, then using

Theorem 1.8, ∀i ∈ {1, 2, . . . , n},

λi(Ŝ) = (h(i))T Ŝh(i)

= Tr((h(i))T Ŝh(i))

= Tr(Ŝ h(i)(h(i))T︸ ︷︷ ︸
∈Sn

+

)

≥ 0

because Ŝ ∈ (Sn
+)
∗ and h(i)(h(i))T ∈ Sn

+.
By Prop 1.10, Ŝ ∈ Sn

+ (since λ(Ŝ) ≥ 0). Thus, (Sn
+)
∗ ⊆ Sn

+. Therefore (Sn
+)
∗ =
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Sn
+. ♢

Claim 2: Sn
+ is a homogeneous cone.

Proof: Note that ∀X ∈ Sn
++, TX : Sn → Sn, TX(·) := X−

1
2 · X−

1
2 , i.e. ∀Z ∈ Sn,

TX(Z) = X−
1
2 ZX−

1
2 .

Claim: TX ∈ Aut(Sn
+), ∀X ∈ Sn

++. (Check!)
Note that I ∈ Sn

++ and ∀U ∈ Sn
++, TU(U) = U−

1
2 UU−

1
2 = I.

So, ∀U, V ∈ Sn
++,

T
V−1(TU(·)) ∈ Aut(Sn

+)

and it maps U to V. The composition of automorphisms is again an automor-
phism.

[T
V−1(TU(Z)) = V

1
2 U−

1
2 ZU−

1
2 V

1
2 ]

Therefore, Sn
+ is homogeneous. ♢

Therefore, Sn
+ is a symmetric cone. The rest of the claims are left as exercises.

For a pair of matrices U, V ∈ Sn, we write U ⪰ V to mean (U − V) ∈ Sn
+

(Löwner (partial) order), and U ≻ V to mean (U −V) ∈ Sn
++.

Note that any linear function f : Sn → R can be written as f (X) = ⟨A, X⟩ for
some A ∈ Sn. A ∈ Sn (otherwise we can take (A + AT)/2).
So linear equations and inequalities on Sn are

⟨Ai, X⟩ = bi, ⟨Ai, X⟩ ≤ bi, etc. for Ai ∈ Sn, bi ∈ R.

Recall, a linear programming problem is a problem of optimizing (minimizing or
maximizing) a linear function of finitely many real variables subject to finitely
many linear equations and inequalities. Every LP can be put into the form

min
x

cTx
s.t. Ax ≤ b

A ∈ Rm×n, b ∈ Rm, c ∈ Rn all given. A Semidefinite Programming Prob-
lem (SDP) is a problem of optimizing a linear function of finitely many matrix
variables (real-valued entries) subject to finitely many linear equations and in-
equalities on these matrix variables and p.s.d.ness constraints on some of these
matrix variables.
Every SDP can be put into the form

(P) inf
X
⟨C, X⟩

s.t. ⟨Ai, X⟩ = bi ∀i ∈ {1, 2, . . . , m}
X ⪰ 0
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C, A1, A2, . . . , Am ∈ Sn, b ∈ Rm are all given.
We define the dual SDP as

sup
y

bTy

s.t.
m

∑
i=1

yi Ai ⪯ C

or equivalently
(D) sup

y
bTy

s.t.
m

∑
i=1

yi Ai + S = C

S ⪰ 0.

Theorem (Weak Duality Relation). For every feasible solution X of (P) and for
every feasible solution (y, S) of (D), we have

⟨C, X⟩ − bTy = ⟨X, S⟩ ≥ 0.

Proof. Suppose X, (y, S) are feasible in (P) and (D) respectively.
Define A : Sn → Rm linear,

[A(X)]i := ⟨Ai, X⟩, ∀i ∈ {1, 2, . . . , m}.

For every such linear map, its adjoint (another linear transformation) A∗ : Sn →
Rm is defined by

⟨A∗(y), X⟩ := [A(X)]Ty, ∀X ∈ Sn, ∀y ∈ Rm.

For our choice of A above, A∗(y) = ∑m
i=1 yi Ai.

3 2018-05-10

Proof (cont). Let X, (y, S) be feasible in (P) & (D) respectively. Then,

⟨C, X⟩ − bTy = ⟨A∗(y) + S, X⟩ − bTy

= ⟨S, X⟩+ ⟨A∗(y), X⟩ − bTy

= ⟨S, X⟩+ yTA(X)− bTy

= ⟨S, X⟩+ yTb− bTy

= ⟨S, X⟩+ bTy− bTy

= ⟨S, X⟩
≥ 0 since X, S ⪰ 0.

7



A corollary is: if for a pair of feasible X, (y, S), ⟨C, X⟩ = bTy, then X, (y, S) are
optimal in (P) & (D).

(P) unbounded ⇒ (D) is infeasible.
(D) unbounded ⇒ (P) is infeasible.

Dual of (D) is equivalent to (P). Usually, we will assume A is surjective (equiv-
alently, A1, A2, . . . , Am are linearly independent). In this situation, every S
satisfying linear equations of (D) determines a unique y. So, sometimes, when
we talk about dual feasible solutions, we may refer to only y, or only S.

It is better to think about the constraint X ∈ Sn
+ as

X ∈ S
n1
+ ⊕ S

n2
+ ⊕ · · · ⊕ S

nr
+ .

I.e.

X =


n1 × n1 0 0 · · · 0

0 n2 × n2 0 · · · 0

0 0
. . . ...

...
... 0

0 0 · · · 0 nr × nr

 .

There are at least two ways to embed LPs as SDPs:

(1) Write linear constraints Xij = 0, ∀i ̸= j together with X ∈ Sn
+

(2) Write X ∈ Sn
+ as X ∈ S1

+ ⊕ · · · ⊕ S1
+︸ ︷︷ ︸

n times

Proposition (1.19, complementary slackness). Let X, S ∈ Sn
+. Then,

⟨X, S⟩ = 0 ⇐⇒ XS = 0.

Proof. (⇐) XS = 0⇒ Tr(XS)︸ ︷︷ ︸
=⟨X,S⟩

= Tr(0) = 0.

(⇒) Suppose X, S ∈ Sn
+, ⟨X, S⟩ = 0.

0 = Tr(XS) = Tr( X
1
2 SX

1
2︸ ︷︷ ︸

⪰0 since S⪰0, X
1
2 ∈Sn

) ≥ 0. By Prop 1.10, λ(X
1
2 SX

1
2 ) = 0. By

Thm 1.8 (spectral decomposition theorem), 0 = X
1
2 SX

1
2 = (X

1
2 S

1
2 )(X

1
2 S

1
2 )T.

Therefore X
1
2 S

1
2 = 0, and thus XS = X

1
2 (X

1
2 S

1
2 )S

1
2 = X

1
2 0S

1
2 = 0.

Note that XS = 0 implies XS ∈ Sn and that ∃Q ∈ Rn×n orthogonal s.t.

X = Q Diag(λ(X))QT , S = Q Diag(λ(S))QT .
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Lemma (1.22 (Schur Complement)). Let T ∈ Sm
++, U ∈ Rn×m, X ∈ Sn.

M :=
[

T UT

U X

]
∈ Sm+n.

Then M ⪰ 0 iff X−UT−1UT ⪰ 0 and
M ≻ 0 iff X−UT−1UT ≻ 0.

Proof. Let T, U, X, M be as above. Note[
I 0

UT−1 I

]
︸ ︷︷ ︸

=:L

[
T 0
0 X−UT−1UT

] [
I T−1UT

0 I

]
︸ ︷︷ ︸

=LT

=

[
T 0
U X−UT−1UT

] [
I T−1UT

0 I

]
=

[
T UT

U X

]
= M

det(L) = 1⇒ L is a linear isomorphism,

hT L
[
∗ 0
0 ∗

]
LTh ≥ 0, ∀h ∈ Rm×n ⇐⇒ hT

[
∗ 0
0 ∗

]
h ≥ 0, ∀h ∈ Rm×n.

Therefore M ⪰ 0 iff T ⪰ 0 and X−UT−1UT ⪰ 0.
The argument for the second part is similar.

This lemma shows how some nonlinear and nonconvex “looking” constraints
may be included in SDPs exactly.
Suppose we have an optimization problem with vector variables u(1), u(2), . . . , u(n) ∈
Rn. Further assume that the objective function and the constraints only involve
linear or affine functions of ⟨u(i), u(j)⟩, i, j ∈ {1, 2, . . . , n}. E.g.

inf ⟨u(1), u(2)⟩ − 5⟨u(2), u(2)⟩+ 7⟨u(3), u(10)⟩+ · · ·
s.t. ⟨u(5), u(6)⟩+ 2⟨u(1), u(8)⟩ − 12⟨u(6), u(6)⟩ ≤ 10

...

Such problems are SDPs.

U :=
[
u(1) u(2) · · · u(n)

]
∈ Rn×n

X := UTU

Note Xij = ⟨u(i), u(j)⟩, ∀i, j ∈ {1, 2, . . . , n}. We form the SDP

inf X1,2 − 5X2,2 + 7X3,10 + · · ·
s.t. X5,6 + 2X1,8 − 12X6,6 ≤ 10

...
X ⪰ 0
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4 2018-05-15

4.1 Duality Theory
For any set K ⊂ Rd, we can define the dual cone of K:

K∗ := {s ∈ Rd : ⟨x, s⟩ ≥ 0∀x ∈ K}.

Note that by definition, K∗ is always a closed convex cone; ∀K ⊆ Rd, K∗∗ is the
smallest closed convex cone in Rd, containing K.

polar of K:
K◦ := {s ∈ Rd : ⟨x, s⟩ ≤ 1∀x ∈ K}

Note: K◦ is always a closed convex set.

For cones K, K◦ = {s ∈ Rd : ⟨x, s⟩ ≤ 0∀x ∈ K} = −K∗.
(If ⟨x, s⟩ ≥ c > 0 for x ∈ K, then ⟨αx, s⟩ ≥ α · c for all α > 0; αx ∈ K for K a
cone).

For any function f : Rd → (−∞,+∞],
Legendre-Fenchel conjugate of f :

f∗(s) := sup
x∈Rd
{−⟨x, s⟩ − f (x)}

epigraph of f :

epi( f ) :=
{(

u
x

)
∈ R⊕Rd : f (x) ≤ u

}
.

f (x) is a convex function ⇐⇒ epi( f ) is a convex set.

Why do we care about automorphisms?
– inequalities: multiplying by a positive factor to both sides preserves the in-
equality
– Löwner inequalities, operator inequalities: applying an automorphism to both
sides preserves the inequality

Theorem (2.8, Hyperplane Separation Theorem). Let G ⊆ Rd be a nonempty
closed convex set and O ∈ Rd \ G. Then, ∃a ∈ Rd \ {O} and α ∈ R++ such
that

G ⊂ {x ∈ Rd : ⟨a, x⟩ ≥ α}.

Proof. Suppose G is nonempty, closed convex, 0 /∈ G. Since G ̸= ∅, ∃x ∈ G,

Gx : = {x ∈ G : ∥x∥2 ≤ ∥x∥2}
= G ∩ B(0, ∥x∥2)
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Claim: Gx is nonempty and compact. inf{∥x∥2
2 : x ∈ Gx} is uniquely attained.

Proof of claim:

• Gx is nonempty, since x ∈ Gx

• Gx is closed, since Gx = G ∩ B(0, ∥x∥2)

• Gx is bounded, since Gx ⊆ B(0, ∥x∥2). Since f (x) := ∥x∥2
2 is continuous

on Rd, the infimum is attained. Since f is strictly convex, the minimizer
is unique. ♢

Let a ∈ Rd be the unique minimizer. Since a ∈ G, 0 /∈ G, α := ∥a∥2
2 > 0.

∀x ∈ G, ∀λ ∈ (0, 1], [λx + (1− λ)a] ∈ G (since G is convex).
Since a is the minimum norm element of G, ∀x ∈ G, ∀λ ∈ (0, 1], ∥λx + (1− λ)a∥2

2 ≥
∥a∥2

2.
∀x ∈ G, ∀λ ∈ (0, 1],

0 ≤ ∥λ(a− x)− a∥2
2 − ∥a∥

n
2

= λ2∥a− x∥2
2 + ∥a∥

2
2 − 2λ⟨a, a− x⟩ − ∥a∥2

2

= λ2∥a− x∥2
2 − 2λ(∥a∥2

2 − ⟨a, x⟩)
⇐⇒ ∀x ∈ G, ∀λ ∈ (0, 1],

⟨a, x⟩ − ∥a∥2
2 ≥ − λ

2 ∥a− x∥2
2.

Taking limit of both sides as λ→ 0+, we obtain ⟨a, x⟩ ≥ ∥a∥2
2 = α∀x ∈ G.

Corollary (2.9). Let G1, G2 ⊆ Rd be nonempty, disjoint, closed convex sets such
that at least one of G1, G2 is bounded. Then, ∃a ∈ Rd \ {0} such that

inf{⟨a, x⟩ : x ∈ G1} > sup{⟨a, x⟩ : x ∈ G2}.

Proof sketch: Define G := G1 − G2 = {g1 − g2 : g1 ∈ G1, g2 ∈ G2}. G is
nonempty, convex, 0 /∈ G (since G1, G2 are disjoint), and prove that G is closed
if at least one of G1, G2 is bounded. Then apply Thm 2.8 and translate back to
the language of G1, G2.

Note that if both G1, G2 are unbounded, trouble may ensue.

Corollary (2.12). Let G1, G2 be nonempty convex sets that are disjoint. Then,
∃a ∈ Rd \ {0} such that

inf{⟨a, x⟩ : x ∈ G1} ≥ sup{⟨a, x⟩ : x ∈ G2}.
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2.14 A Strong Duality Theorem for SDP
(P) inf ⟨C, X⟩

s.t. ⟨A, X⟩ = b
X ⪰ 0

(D) sup bTy
s.t. A∗(y) + S = C

S ⪰ 0.

A Slater point of {A(X) = b, X ⪰ 0} is X ∈ Sn such that A(X) = b, X ≻ 0.
A Slater point of {A∗(y) + S = C, S ⪰ 0} is (y, S) ∈ Rn ⊕ Sn such that
A∗(y) + S = C, S ≻ 0.

5 2018-05-17
Suppose (D) has a Slater point and that the optimal objective value of (D) is
bounded above. Then (P) has an optimal solution and the optimal objective
values are the same.

Proof. Suppose ∃(y, S) ∈ Rm ⊕ Sn
++ such that A∗(y) + S = C, S ≻ 0.

Claim 1: We may assume b ̸= 0.
Proof: Suppose b = 0. Then X := 0 is feasible in (P) with objective value 0,
(y, S) is feasible in (D) with objective value bTy = 0Ty = 0, thus by Corollary
1.18, X, (y, S) are optimal in their respective problems. ♢
From now on, b ̸= 0.
Suppose the objective function value of (D) is bounded from above on the fea-
sible region of (D).
=⇒ (D) has a finite optimal value. Call it z∗.

G1 := {S ∈ Sn : S = C−A∗(y), for some y ∈ Rm s.t. bTy ≥ z∗}
G2 := Sn

++

Claim 2: G1 ̸= ∅, G2 ̸= ∅; G1, G2 are convex; G1 ∩ G2 = ∅.
Proof: Consider

(LP1) max bTy
s.t. A∗(y) + S = C

bTy ≤ z∗.

This LP has feasible solutions (e.g. (y, S)) so it is not unbounded. Therefore,
by the Fundamental Theorem of LPs, it has an optimal solution. ∴ G1 ̸= ∅.
To prove G1 ∩ G2 = ∅, suppose not (we are seeking a contradiction). Suppose
∃S̃ ∈ Sn

++ s.t. S̃ = C−A∗(ỹ), bT ỹ ≥ z∗ for some ỹ ∈ Rm. For ε > 0, and small
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enough, consider ŷε := ỹ + εb. Note that for all ε > 0 and small enough, ŷε is
feasible in (D) and its objective value is:

bT ŷε = bT ỹ︸︷︷︸
≥z∗

+ ε∥b∥2
2︸ ︷︷ ︸

>0, by Claim 1

> z∗,

a contradiction to the definition of z∗.
The rest of the claim is left as an exercise. ♢
Using Claim 2, we apply Corollary 2.12 to the sets G1, G2. ∃X̃ ∈ Sn \ {0} such
that

inf{⟨X̃, S⟩ : S ∈ Sn
++} ≥ sup{⟨X̃, S⟩ : S ∈ G1}.

Since G2 ̸= ∅, the infimum is bounded below. Since Sn
++ is a cone, the infimum

is bounded below by zero. By taking a sequence {S(k)} ⊂ Sn
++ s.t. S(k) → 0,

we see that the infimum is zero.
Since the infimum is zero,

⟨X̃, S⟩ ≥ 0, ∀S ∈ Sn
++

=⇒ ⟨X̃, S⟩ ≥ 0, ∀S ∈ cl(Sn
++) = Sn

+

=⇒ X̃ ∈ Sn
+ (Prop. 1.10).

Also,

⟨X̃, C−A∗(y)⟩ ≤ 0, ∀y ∈ Rm s.t. bTy ≥ z∗

⇐⇒ ⟨C, X̃⟩ ≤ [A(X̃)]Ty.

Claim 3: ∃α ∈ R+ such that A(X̃) = αb.
Proof: Consider

(LP2) min [A(X̃)]Ty
s.t. bTy ≥ z∗.

(LD2) max αz∗

s.t. αb = A(X̃)
α ≥ 0.

Since (LP2) has feasible solutions and is not unbounded, it has an optimal
solution. By the LP strong duality theorem, its dual (LD2) has an optimal
solution. ♢
Case 1: α = 0. Then A(X̃) = 0, and ∀y ∈ Rm s.t. bTy ≥ z∗, we have

0 = [A(X̃)]Ty

≥ ⟨C, X̃⟩
= ⟨S−A∗(y), X̃⟩
= [A(X̃)]Ty︸ ︷︷ ︸

=0

+ ⟨S, X̃⟩︸ ︷︷ ︸
>0, by Prop 1.11

> 0,

13



a contradiction.
Therefore, Case 1 never happens.
Case 2: α > 0. Then X̂ := 1

α X̃ ∈ Sn
+ and A(X̂) = b (by Claim 3).

We have

⟨C, X̂⟩ ≤ [A(X̂)]Ty︸ ︷︷ ︸
=bTy

, ∀y ∈ Rm s.t. bTy ≥ z∗

=⇒ ⟨C, X̂⟩ ≤ z∗.

By the Weak Duality Relation, we conclude that X̂ is an optimal solution of
(P), and the optimal objective values of (P) and (D) are the same.

Ex:
n := 2, m := 1, C :=

[
1 0
0 0

]
, A :=

[
0 1
1 0

]
, b := 2

(P) inf ⟨C, X⟩ = x11
s.t. 2x21 = x21 + x12 = ⟨A1, X⟩ = 2

X ⪰ 0.
≡

inf x11

s.t.
[

x11 1
1 x22

]
⪰ 0.

(D) inf 2y

s.t.
[

0 y
y 0

]
⪯

[
1 0
0 0

]
.

(D) is equivalent to

(D) inf 2y

s.t.
[

1 −y
−y 0

]
⪰ 0 ⇐⇒ y = 0.

Thus, y = 0 is the only feasible solution in (D); it is optimal with objective
value zero.

Xε :=
[

ε 1
1 1

ε

]
is feasible in (P), ∀ε > 0.
Even though the optimal objective values are the same, (P) does not attain its
optimal value.

6 2018-05-24
Ex: n := 3, m := 2,

C :=

0 1 0
1 0 0
0 0 0

 , A1 :=

0 0 0
0 1 0
0 0 0

 , A2 :=

 0 −1 0
−1 0 0
0 0 2

 , b :=
[

0
2γ

]
,
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γ ∈ R+, a parameter.

(Pγ) inf 2x21

s.t.

x11 0 x31
0 0 0

x31 0 γ

 ⪰ 0.

Optimal objective value of (Pγ) is zero.
∀γ ∈ R+,

X∗γ :=

0 0 0
0 0 0
0 0 γ


(D) sup 2γy2

s.t.

 0 1 + y2 0
1 + y2 −y1 0

0 0 −2y2

 ⪰ 0.

∀ feasible solutions of (D), 1 + y2 = 0 ⇐⇒ y2 = −1.

The set of feasible solutions =
{(

y1
y2

)
: y1 ≤ 0, y2 = −1

}
.

Optimal objective value of (D) is −2γ. There is a duality gap of 2γ.

6.1 Infeasibility/Unboundedness Certificates:
Recall from LP theory a “Theorem of the Alternative”:
Let A ∈ Rm×n, c ∈ Rn. Then exactly one of the following systems has a
solution:

(I) A⊤y ≤ c, y ∈ Rm,

(II) Ad = 0, d ≥ 0, c⊤d < 0, d ∈ Rn.

An exact generalization of this would have been:
Let A : Sn → Rm, C ∈ Sn. Then exactly one of the following systems has a
solution:

(I) A∗(y) ⪯ C,

(II) A(D) = 0, D ⪰ 0, ⟨C, D⟩ < 0.

- False, in general!
Ex: n := 2, m := 1, C :=

[
0 1
1 0

]
, A1 :=

[
1 0
0 0

]
, b := 1.

(P) inf 2x21

s.t.
[

1 x21
x12 x22

]
⪰ 0.

(D) sup y

s.t.
[
−y 1
1 0

]
⪰ 0.
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(D) is infeasible.
However, it is almost feasible.

X(t) :=
[

1 −t
−t t2

]
is feasible for all t ∈ R. The objective value of X(t),

⟨C, X(t)⟩ = −2t→ −∞ as t→ +∞. =⇒ (P) is unbounded.

Feasible region of (P) can be represented as x22 ≥ x2
21.

However, ̸ ∃D ∈ S2
+ s.t. A(D) [[TODO!]]

Defn: Given A : Sn → Rm, C ∈ Sn, the system A∗(y) ⪯ C is almost feasible
if ∀ε > 0, ∃Cε ∈ Sn such that ∥C− Cε∥F < ε and the system A∗(y) ⪯ Cε is
feasible.

Theorem (2.22). Let A : Sn → Rm linear, C ∈ Sn. Then exactly one of the
following holds:

(I) A(D) = 0, D ⪰ 0, ⟨C, D⟩ < 0.

(II) A∗(y) ⪯ C is almost feasible.
Proof. Suppose (I) holds. Wlog, we may assume ∃D ∈ Sn

+ s.t. A(D) =
0, ⟨C, D⟩ = −1. For the sake of reaching a contradiction, suppose (II) also
holds.
Then ∀ε > 0, ∃Cε ∈ Sn s.t. A∗(yε) ⪯ Cε, for some yε ∈ Rm =⇒ A∗(yε) ⪯
C + (C− ε− C).
Take inner product of both sides with D.

=⇒ 0 =
⊤

[A(D)]︸ ︷︷ ︸
=0

yε

= ⟨D,A∗(yε)⟩
≤ ⟨C, D⟩︸ ︷︷ ︸

=−1

+ ⟨Cε − C, D⟩︸ ︷︷ ︸
≤∥C−Cε∥F∥D∥F<ε

< −1
2
∀ε < 1

2∥D∥F

We reached [[TODO!]]
Therefore, (I) holds =⇒ (II) does not hold.
Now, suppose (I) does not hold. I.e., ̸ ∃D ⪰ 0 s.t. A(D) = 0, ⟨C, D⟩ < 0.
Consider

(D) sup η
s.t. A∗(y) + η I ⪰ C

η ≤ 0
.

Its dual is
(P) inf ⟨C, X⟩

s.t. A(X) = 0
⟨I, X⟩ ≤ 1

X ⪰ 0.
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Since (D) has a Slater point (y := 0, η := −(∥C∥2 + 1)) and its objective value
is bounded above (by zero, recall the constraint “η ≤ 0”), our Strong Duality
Theorem applies. Note that (P) has a feasible solution X := 0 with objective
value zero. Since ̸ ∃D ⪰ 0 s.t. A(D) = 0, ⟨C, D⟩ < 0, zero is the optimal value
of (P).
By the Strong Duality Theorem, the optimal objective value of (D) is also zero.
If (D) attains this optimal value then A(y) ⪯ C has a feasible solution.
Otherwise, ∃ a sequence (y(k), ηk) of feasible solutions of (D) such that ηk → 0−

as k→ +∞.

A∗(y(k)) ⪯ C− ηk I

For every ε > 0, choosing k large enough we extract Cε := C − ηk I and verify
that A∗(y) ⪯ C is almost feasible.

6.2 Some Geometry for the Cone Sn
+

Let K ⊆ Rn be a closed convex cone. A convex cone F ⊆ K is a face of K if
∀u, v ∈ K s.t. (u + v) ∈ F, we have u, v ∈ F.

A face F of K is exposed if ∃a ∈ Rn such that

K ⊆ {x ∈ Rn : ⟨a, x⟩ ≥ 0} and F = {x ∈ K : ⟨a, x⟩ = 0}.

A face F of K is called proper if F ̸= ∅, and F ̸= K.

K is called facially exposed if every proper face of K is exposed.

Sn
+ is facially exposed, but in general feasible regions of SDPs are not facially

exposed.

7 2018-05-29
Faces of convex cones

Exposed faces

Facially exposed cones

If F is a face of K then we write F ⊴ K. This relation is transitive: F1 ⊴ F2 and
F2 ⊴ K =⇒ F1 ⊴ K.
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We will use the notion of relative interior of a set.
For G ⊆ Rn, affine hull of G is the smallest affine space which contains G.

affine. hull(G) := {
n

∑
i=1

λivi : v1, v2, . . . , vn ∈ G,
n

∑
i=1

λi = 1}

relative interior of G is the interior of G with respect to affine hull of G. We
denote relint(G).

Theorem (2.25).

(a) Every nonempty face G of Sn
+ is uniquely characterized by a linear subspace

L ⊆ Rn such that

G = {X ∈ Sn
+ : Null(X) ⊇ L}

relint(G) = {X ∈ Sn
+ : Null(X) = L}

(Null(X) = null space / kernel of X).

(b) Sn
+ is facially exposed

(c) Every proper face of Sn
+ is projectionally exposed, in particular, G = (I −

Q)Sn
+(I−Q), where Q is the orthogonal projection onto the linear subspace

L defining G via part (a).

As a consequence of this theorem, we see that every proper face of Sn
+ is iso-

morphic to Sk
+ for some k < n:

G =

{
Q
[

X 0
0 0

]
Q⊤ : X ∈ Sk

+

}
for some Q ∈ Rn×n orthogonal.

7.1 Back to Duality Theory
If Slater condition holds, then our Strong Duality Theorem applies. What do
we do if it fails but (P) is feasible?

7.2 Borwein and Wolkowicz Approach
Restrict the problem to the minimal face of Sn

+ which contains the feasible re-
gion. When restricted to the minimal face, we have Slater condition.

A key lemma in this approach is

Lemma (2.27). Suppose (P) is feasible. Then exactly one of the following holds:

(I) A(X) = b, X ∈ Sn
++

(II) ∃y ∈ Rm s.t. A∗(y) ∈ Sn
+ \ {0}, b⊤y = 0

18



Note that if (I I) has a solution y ∈ Rm, then for every X ∈ {X ∈ Sn
+ : A(X) =

b}, we have y⊤A(X)︸ ︷︷ ︸
=⟨A∗(yy),X⟩

= y⊤b = 0.

So, every solution y of system (II) gives us a linear equation ⟨A∗(yy), X⟩ = 0
that can be added to the constraints in (P).

In LP, adding redundant constraints to (P) does not lead to same kind of con-
sequences as in SDP.

Ex: n := 3, m := 2, C :=

1 0 0
0 0 0
0 0 0

 , A1 :=

0 0 0
0 1 0
0 0 0

 , A2 :=

1 0 0
0 0 1
0 1 0

 , b :=[
0
1

]
.

(P) inf x11

s.t.

 1 0 x21
0 0 0

x21 0 x33

 ⪰ 0

(D) inf y2

s.t.

1− y2 0 0
0 −y1 −y2
0 −y2 0

 ⪰ 0.

For every feasible solution y2 = 0, optimal value = 0.

Adding the redundant linear equation ⟨A3, X⟩ = 0 for A3 :=

0 0 0
0 0 1
0 1 0

 to (P)

does not change the feasible region of (P) or the set of optimal solutions, but
(D) becomes

(D) inf y2

s.t.

1− y2 0 0
0 −y1 −y2 − y3
0 −y2 − y3 0

 ⪰ 0.

This dual has no duality gap (y∗1 = 0, y∗2 = 1, y∗3 = −1).

7.3 Ramana’s Extended Lagrange Slater Dual (ELSD)
Our main problem of interest is

(D) sup b⊤y
s.t. A∗(y) ⪯ 0.

(ELSD) inf ⟨C, U + W⟩
s.t. A(U + W) = b

W ∈ Wn︸︷︷︸
linear subspace

,

U ⪰ 0.
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Ck := {(U1, W1, U2, W2, . . . , Uk, Wk) : W0 : = 0,

A(Ui + Wi−1 + W⊤i−1) = 0,

⟨C, Ui + Wi−1 + W⊤i−1⟩ = 0,

Ui ⪰WiW⊤i , ∀i ∈ {1, 2, . . . , k}}

Note that Ui ⪰WiW⊤i ⇐⇒
[

I W⊤i
Wi U

]
⪰ 0.

Wk := {Wk +W⊤k : (U1, W1, . . . , Uk, Wk) ∈ Ck, for some (U1, W1, . . . , Wk−1, Uk)}

Theorem (2.28). If (D) has a finite optimal value, then (ELSD) has an optimal
solution, and the optimal values of (D) & (ELSD) coincide.

Theorem (2.29). Given A : Sn → Rm linear, C ∈ Sn, exactly one of the following
has a solution:

(I) A∗(y) ⪯ C,

(II) A(U + W) = 0, U ⪰ 0, W ∈ Wn, ⟨C, U + W⟩ = −1.
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Assigned reading: finish reading Chapter 2
We proved

• a Strong Duality Theorem

have seen how to remove the Slater point assumption (at least in theory)

• by Borwein-Wolkowicz approach (a.k.a Facial Reduction)

• or by Ramana’s Extended Lagrange-Slater Dual

(the two are closely related)

In the majority of the applications, SDP problems arise as a relaxation of a
typically nonconvex optimization problem.

8.1 When does the Slater Condition hold in SDP relaxations?
Let F ⊂ Rn denote (nonconvex) set of feasible solutions. Our application prob-
lem is

inf c⊤x
x ∈ F

or inf c⊤x + x⊤Cx
x ∈ F,

where c ∈ Rn, C ∈ Sn are given.
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8.2 Homogeneous Equality Form
If ∃ a linear transformation A : Sn+1 → Rm such that

F = {x ∈ Rn : A
(

1 x⊤

x xx⊤

)
︸ ︷︷ ︸(
1
x

)(
x x⊤

)
= 0}

we say that A is a homogeneous equality form representation of F.

Any finite system of multivariate quadratic equations (their solution set) can
be expressed in this form.
For i ∈ {1, 2, . . . , m}, let Q(i) ∈ Sn, q(i) ∈ Rn, γi ∈ R be given such that our
system is:⟨[

γ q(i)
⊤

q(i) Q(i)

] [
1 x⊤

x xx⊤

]⟩
= x⊤Q(i)x + 2q(i)

⊤
x + γi = 0, ∀i ∈ {1, 2, . . . , m}.

We can also handle quadratic inequalities:

x⊤Q(i)x + 2q(i)
⊤

x + γi ≤ 0 ⇐⇒ x⊤Q(i)x + 2q(i)
⊤

x + γi + s2
i︸ ︷︷ ︸

=

⟨ γi q(i)
⊤

0

q(i)
⊤

q(i) 0
0 0 1


1 x⊤ si

x xx⊤ six
si six⊤ s2

i


︸ ︷︷ ︸
=


1
x
si


[
1 x⊤ si

]

⟩
= 0

Consider a multivariate polynomial inequality:

x6
1x4

2 + x3
2 + x2

1x2
3 + x1 − 7 ≤ 0

x4 = x2
1

x5 = x2
4

x6 = x2
5

x7 = x2
2

x8 = x2
7

x9 = x2
3

x6x8 + x2x7 + x4x9 + x1 − 7 = 0

Note that the solution set of the quadratic system projected onto the first three
coordinates is the solution set of the original inequality.
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Proposition (2.32). Any finite system of multivariate polynomial equations and
inequalities can be put into Homogeneous Equality Form.

P̂ :=
{(

1 x⊤

x X

)
∈ Sn+1

+ : A
(

1 x
x X

)
= 0

}
F := conv

{(
1 x⊤

x xx⊤

)
: x ∈ F

}
⊆ P̂

So, P̂ is an SDP relaxation of F.

Theorem (2.33). Suppose F ⊂ Rn is such that dim(conv(F)) = n. Then P̂ has
Slater points.

Proof. Suppose conv(F) is full dimensional. Then, ∃v(1), v(2), . . . , v(n+1) ∈ F
such that v(1), v(2), . . . , v(n+1) is affinely independent (equivalently,(

1
v(1)

)
,
(

1
v(2)

)
, . . .

(
1

v(n+1)

)
∈ Rn+1 are linearly independent.)

Then for every λ ∈ Rn+1
++ such that e⊤λ = 1, we have

Vλ :=
n+1

∑
i=1

λi

(
1

v(i)

)(
1 v(i)

⊤
)
∈ F ⊆ P̂ ;

moreover, by Prop 1.11, Vλ ≻ 0.
Therefore, P̂ has Slater points.

If the dim(conv(F)) =: d < n, but we know d, we can construct an SDP
relaxation that has Slater points.
Suppose we know the d-dimensional affine subspace that contains F. That is,
we are given ℓ ∈ Rn, L ∈ Rd×n such that x ∈ F =⇒ x = ℓ+ L⊤y for some
y ∈ Rd.
Define L : Sn+1 → Sd+1

L(Z) :=
(

1 ℓ⊤

0 L

)
Z
(

1 0
ℓ L⊤

)
.

Its adjoint is L∗ : Sd+1 → Sn+1

L∗(W) =

(
1 0
ℓ L⊤

)
W
(

1 ℓ⊤

0 L

)
.

A : Sd+1 → Rm,
A(W) := A(L∗(W))

FL :=
{

y ∈ Rd : A
(

1 y⊤

y yy⊤

)
= 0

}
, P̂L :=

{(
1 y⊤

y Y

)
∈ Sd+1 : A

(
1 y⊤

y Y

)
= 0

}
.
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Theorem (2.34). Slater condition holds for P̂L.
SDP relaxation for a set of given c ∈ Rn, C ∈ Sn is

inf
⟨
L
(

0 c⊤

c C

)
,
(

1 y⊤

y Y

)⟩
s.t. A

(
1 y⊤

y Y

)
= 0,(

1 y⊤

y Y

)
∈ Sd+1

+

8.3 Nonhomogeneous Equality Form
Suppose A︸︷︷︸

linear
: Sn → Rm, b ∈ Rm are given such that

F = {x ∈ Rn : A(xx⊤) = b}
P̂ = {X ∈ Sn

+ : A(X) = b}

Theorem (2.35). Suppose there exists a linearly independent set of vectors

{v(1), v(2), . . . , v(n)} ⊆ F.

Then P̂ has Slater points.

9 2018-06-05

9.1 Ellipsoid Method
Given c ∈ Rd (defining the center) and A ∈ Sd

++ (determining the shape and
size) the set E := {x ∈ Rd : (x− c)⊤A−1(x− c) ≤ 1} defines an ellipsoid, and
every full-dimensional ellipsoid can be expressed this way.

Note that every ellipsoid is an affine image of a Euclidean ball

E = c + A
1
2 Bd(0, 1)

=⇒ vol(E) =
√

det(A) vol(Bd(0, 1))

Theorem (3.1). For every compact convex set G ⊂ Rd with nonempty interior,
there exists a unique minimum volume ellipsoid E which contains G. Moreover,
shrinking E around its centre by a factor of d results in an ellipsoid contained
in G.

The ellipsoid E in the theorem is called Löwner-John ellipsoid. Suppose c ∈ Rd

is the centre of the Löwner-John ellipsoid. Translate both sets (E, G) such that
c is the origin.

1
d
(E− c) ⊆ (G− c) ⊆ (E− c)
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The factor d is tight, take simplex in Rd as G.

Let’s discuss some ingredients for a proof of this theorem.

(x− c)⊤A(x− c) ≤ 1 ∀x ∈ G

A ≻ 0, c ∈ Rd

Objection function: minimize the volume of E.

vol(E) = [det(A)]−
1
2 vol(Bd(0, 1))

ln(·) is monotone on R++

(PĀ) inf − ln det(A)
s.t. (x− c)⊤A(x− c) ≤ 1 ∀x ∈ G

A ≻ 0, c ∈ Rd

(PA) inf − ln det(A)←− strictly convex on Sd
++

s.t.
[
1 x⊤

] [α a⊤

a A

] [
1
x

]
︸ ︷︷ ︸

=Tr

(([
1
x

][
1 x⊤

])[α a⊤

a A

])
≤ 1 ∀x ∈ G

[
α a⊤

a A

]
⪰ 0, c ∈ Rd

Given an optimal solution (Ā, c) of (PĀ), we can construct a feasible solution
(α, a, A) of (PA) with the same objective value.

A := Ā,
a := −Āc,

α := c⊤ Āc.

Consider a problem of computing a minimizer of a convex function f : R→ R.
We are given that a minimizer of f lies in an interval [a, b] ⊂ R. We have
access to an oracle for f which takes as input x̄ ∈ [a, b] and outputs one of the
following:

• x̄ is a minimizer

• minimizer lies in {x : x > x̄}

• minimizer lies in {x : x < x̄}

We will use an Information Complexity approach to prove that bisection is an
optimal algorithm for this problem. An algorithm that deviates from bisection
can be fooled by a convex function which is constructed after the interaction
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with the algorithm takes place.

If an algorithm uses x̄ to the left of the midpoint of the current interval, the
oracle responds “the minimizer is in {x ∈ R : x > x̄}”. If it uses x̄ to the right
of the midpoint of the current interval, the oracle responds “the minimizer is in
{x : x < x̄}”. At the end, ∃ f : R → R strictly convex which is consistent with
these answers.

One can view the Ellipsoid Method as a generalization of bisection to Rd. First,
we will start with the problem of “Given a separation oracle for G and an
ellipsoid E ⊇ G, find a point in G”. G ⊂ Rd is a compact convex set.

Ẽ = {x ∈ E : ⟨a, x⟩ ≤ ⟨a, c⟩}

10 2018-06-07

10.1 Ellipsoid Algorithm I (Convex feasibility)
“Input” access to a weak separation oracle for a closed convex set G ⊆ Rd,
E0 := E(A0, c(0)) such that E0 ∩ G ̸= ∅, ε > 0

k := 0,

Step 1. Ask the oracle “is c(k) ∈ G?” If “YES”, stop x := c(k) ∈ G. If “NO”
and vol(Ek) < ε, STOP and report vol(Ek)

Step 2. Oracle returns a ∈ Rd \ {0} s.t. Ẽ := {x ∈ Ek : ⟨a, x⟩ ≤ ⟨a, c(k)⟩} ⊇
G ∩ Ek

Step 3.

c(k) := c(k) − 1

(d + 1)
√

a⊤Aka
Aka

Ak+1 :=
d2

d2 − 1

[
Ak −

2
(d + 1)a⊤Aka

Akaa⊤Ak

]
Ek+1 := E(Ak+1, c(k+1))
k := k + 1
Go to Step 1.

Theorem (3.4). For every k ∈ Z++, we have Ẽ ⊆ Ek+1 and ln
(

vol(Ek+1)
vol(Ek)

)
≤

− 1
2d .
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After k iterations,

ln
(

vol(Ek+1)

vol(Ek)

)
= ln

(
vol(Ek)

vol(E0)

vol(Ek)

vol(Ek−1)

vol(Ek−1)

vol(Ek−2)
· · · vol(E1)

vol(E0)

)
=

k−1

∑
j=0

ln
(

vol(E1)

vol(E0)

)
≤ − k

2d
by Thm 3.4

Suppose vol(E0) =: R. If k ≥ 4d ln( R
ε ) then we know that vol(Ek) < ε. We

have

ln
(

vol(E1)

vol(E0)

)
≤ −2 ln(

R
ε
)

=⇒≤ −2 ln R + 2 ln ε + ln R < ln ε

We are assuming R > 1, ε ∈ (0, 1)

Theorem (3.5). Let G ⊆ Rd be a closed convex set. Ellipsoid E0 := E(A0, c(0))
of volume R > 1 be given such that G ∩ E0 ̸= ∅, and suppose we have access
to a separation oracle for G. Then for every ε ∈ (0, 1) in O(d ln( R

ε )) iterations,
either the algorithm returns x ∈ G ∩ E0 or proves that vol(G ∩ E0) < ε.

If we are interested in solving

inf f (x)
s.t. x ∈ G,

where f : Rd → R a convex function.
Introduce a new parameter t ∈ R and consider

inf 0
s.t. x ∈ G,

f (x) ≤ t

We have a convex feasibility problem on G̃t := {x ∈ G : f (x) ≤ t} and we can
do bisection on t.
Another way to deal with this problem is to have access to a subgradient oracle for f .

For a convex function f : Rd → R a subgradient of f at x is h ∈ Rd such that
f (x) ≥ f (x) + ⟨h, x− x⟩ ∀x ∈ Rd.

Given x ∈ Rd, the subgradient oracle returns f (x) and h ∈ ∂ f (x), where

∂ f (x) := {h ∈ Rd : h is a subgradient of f at x} (subdifferential of f at x).
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We can modify our Algorithm I (Convex feasibility) to Ellipsoid Algorithm 2
(Convex Optimization) in the following way:

In each iteration, we have Ek := E(Ak, c(k)) we ask the separation oracle for G
“is c(k) ∈ G?” If “NO” proceed as before, if “YES” call the subgradient oracle
with x := c(k).

If h = 0 then STOP c(k) is optimal; otherwise Ẽ := {x ∈ Ek : h⊤x ≤ h⊤x} and
continue as before.

Theorem (3.7). Let G ⊂ Rd be a closed convex set such that for some 0 < r <
1 < R we have

B(x̃, r) ⊆ G ⊆ Bd(0, R), where x̃ ∈ Rd exists but is not given.

Suppose we have access to a separation oracle for G and a subgradient oracle
for f , and ε ∈ Q+, ε ∈ (0, 1). Then in O(d2(ln(R/r) + ln(µ0/ε))) iterations,
Ellipsoid Algorithm 2 returns x ∈ G such that f (x) ≤ minx∈G f (x) + ε, where
µ0 = ε + supx∈Bd(0,R){ f (x)} − infx∈Bd(0,R){ f (x)}.

11 2018-06-12

11.1 Interior Point Method for SDP
We will study an algorithm which generates (Xk, yk, Sk) ∈ Σ2

++ ⊕Rm ⊕ Σn
++,

A(Xk) = b, A∗(yk) + Sk = C, such that at every iteration, the number of cal-
culations is in the order of solving a linear system of size O(n).

f (x) : − ln det(X) : Σn
++ → R

f (x) is a self-concordant function introduced by Nesterov-Nemirovski.

Proposition (4.1). For every X ∈ Σn
++, H ∈ Σn,

f ′(X)[H] =
∂

∂α
f (X + αH)

∣∣
α=0

= −⟨X−1, H⟩

f ′′(X)[H, H] =
∂2

∂α2 f (X + αH)
∣∣
α=0

= Tr(X−1HX−1H) which, since X, H ∈ Σn
++, shows that f is strictly convex.

Assume both (P) and (D) have Slater points, A is surjective. For every µ > 0,
define

(Pµ) inf 1
µ ⟨C, X⟩ − ln det X

s.t. A(X) = b.
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Ex: (Pµ) has a unique solution X(µ) for every µ > 0 (using the existence of
Slater points (P), (D)).
If we write the optimality conditions (KKT),

1
µ

C− X−1 −A∗(y) = 0

A(X) = b, X ≻ 0.

y := µy, S = µX−1.

A(X) = b, X ≻ 0,
A∗(y) + S = C,

XS = µI

(call this system (∗)) =⇒ For every µ > 0, this system has a unique solution
(X(µ), y(µ), S(µ)) that defines the primal-dual central path.

Exercise: ⟨X(µ), S(µ)⟩ = nµ→ 0.
Newton direction:

F(x) = 0

∇F(x0)d = −F(x0)

– is a first-order approximation
The Newton direction (DX , dy, DS) at (X, y, S) for (∗) satisfies

A(DX) = 0
A∗(dy) + DS = 0
XDS + SDX = µI − XS.

Ex: This system has a unique solution for (X, S).

We can exploit the symmetric structure of PSD cone to design a primal-dual
symmetric and scale-invariant algorithm.
For some W ∈ Σn, non-singular, let us define W •W ∈ Aut(Σn

++),

V = WSW

= W−1XW−1

Ex: W2 = S−
1
2 (S

1
2 XS

1
2 )

1
2 S−

1
2

Define

A(•) = A(W •W)

DX := W−1DXW−1,

DS = WDSW.
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The system for (∗) becomes
A(DX) = 0

A∗(dy) + DS = 0

XDS + SDX = γV−1 −V.

We need a proximity measure that quantifies the distance to the central path.
Theorem (4.2). For every X, S ∈ Σn

++,

Ψ(X, S) := n ln
(
⟨X, S⟩

n

)
− ln det(X)− ln det(S) ≥ 0.

Moreover, equality holds ⇐⇒ XS = µI.
Primal-dual potential function:

Φ√n(X, S) :=
√

n ln(⟨X, S⟩) + Ψ(X, S), ∀X, S ∈ Σn
++.

Idea: drive the value of Φ√n(X, S)→ −∞.

Algorithm 1: Primal-dual Potential Reduction
Input: X0, S0 ∈ Σn

++ feasible in (P)&(D), and ϵ ∈ (0, 1) s.t.
Ψ(X0, S0) ≤ n ln 1

ϵ .
1 k = 0
2 while ⟨Xk, Sk⟩ > ϵ⟨X0, S0⟩ do
3 W2 = (Sk)−

1
2 ((Sk)

1
2 Xk(Sk)

1
2 )

1
2 (Sk)−

1
2

4 A = A(W •W),
5 V = WSkW = W−1XkW−1

6 Ũ := − n+
√

n
⟨Xk ,Sk⟩V + V−1

7 U := Ũ
∥Ũ∥F

8 Solve the system

A(DX) = 0

A∗(dy) + DS = 0

XDS + SDX = U.

Compute

ᾱ : = argmin{Φ√n(V + αDX , V + αDS) : α > 0}

Xk+1 = Xk + ᾱWDXW

Sk+1 = Sk + ᾱW−1DSW−1

// Can use line search to approximately solve for ᾱ
9 k = k + 1
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Theorem (4.13). The above algorithm terminates in at most 24
√

n ln 1
ϵ iterations

with Xk, Sk feasible in (P) and (D) such that ⟨Xk, Sk⟩ < ϵ⟨X0, S0⟩.

In the above algorithm,

Φ√n(Xk+1, Sk+1)−Φ√n(Xk, Sk) ≤ − 1
12

= −δ.

Φ√n(Xk, Sk)−Φ√n(X0, S0) =
√

n ln
⟨Xk, Sk⟩
⟨X0, S0⟩ + Ψ(Xk, Sk)︸ ︷︷ ︸

≥0

−Ψ(X0, S0)︸ ︷︷ ︸
≤
√

n ln 1
ϵ

.

By the above assumption,

− k
12
≥
√

n ln
⟨Xk, Sk⟩
⟨X0, S0⟩ −

√
n ln

1
ϵ

.

Therefore, for every k ≥ 2
√

n
δ ln 1

ϵ , we get ⟨Xk, Sk⟩ ≤ ϵ⟨X0, S0⟩.

Φ√n(X(α), S(α))−Φ√n(X, S) = (n +
√

n) ln
⟨X(α), S(α)⟩
⟨X, S⟩ + f (X(α))− f (X) + f (S(α))− f (S)

where f = − ln det X

Lemma (4.6). Let X ∈ Σn
++. Suppose D ∈ Σn satisfies

∥D∥X : = ⟨D, X−1DX−1⟩
1
2 ≤ 1

f (X + D) ≤ f (X) + ⟨ f ′(X), D⟩+ ∥DX∥2
X

2(1− ∥DX∥X)
2

12 2018-06-14
Finish reading Chapter 4 and start reading Chapter 5.

Central Path is defined by solutions (Xµ, yµ, Sµ) of

A(X) = b, X ≻ 0
A∗(y) + S = C

S = µX−1

Proximity measure: Ψ(X, S) := n ln
(
⟨X,S⟩

n

)
− ln det(X)− ln det(S).

Ψ : Sn
++ ⊕ Sn

++ → R
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Theorem (4.2). For every pair X, S ∈ Sn
++, Ψ(X, S) ≥ 0. Equality holds above

iff S = µX−1 (with µ := ⟨X,S⟩
n ).

Theorems 4.5 and 4.13 assume

• X(0) ≻ 0, S(0) ≻ 0 feasible in (P) & (D) respectively are given

• Ψ(X(0), S(0)) ≤
√

n ln
(

1
ϵ

)
Let’s consider an auxiliary problem (pick a large constant M > 0, add a new
variable ζ)

(Paux) inf ζ
s.t. A(X) + [b−A(I)]ζ = b

⟨I, X⟩ ≤ M
X ⪰ 0
ζ ≥ 0

(Daux) sup b⊤y + Mη
s.t. A∗(y) + η I ⪯ 0

[b−A(I)]⊤y ≤ 1
η ≤ 0

X(0) := I, ζ0 = 1 is a Slater point.
y(0) := 0, η0 := −1 is feasible in (Daux). S(0) = I ≻ 0
Ψ(X(0), ζ0, S(0), η0) = 0
If we prove that the optimal objective value of (Paux) is positive, then we would
have proven “(P) has no feasible solutions in {X ∈ Sn

++ : Tr(X) ≤ M}”.

To make our discussion more detailed, let’s consider LP as a special case.

(LP) min c⊤x
s.t. Ax = b

x ≥ 0

A ∈ Qm×n, b ∈ Qm, c ∈ Qn are given.
Given β ∈ Z, size(β) := ⌈log2(|β|+ 1)⌉+ 1
We can write every γ ∈ Q as γ = p

q , p, q ∈ Z relatively prime, size(γ) :=
size(p) + size(q)
size(A) := ∑m

i=1 ∑n
j=1 size(Aij), size(LP) := size(A) + size(b) + size(c) =: L.

We may assume A ∈ Zm×n, b ∈ Zm, c ∈ Zn

F := {x ∈ Rn : Ax = b, x ≥ 0} (feasible region of the LP)

Proposition (4.14). (a) For every extreme point x̄ of F, size(x̄) = O(L)

(b) For every pair of extreme points x̄, x̂ of F, either c⊤ x̄ = c⊤ x̂ or
∣∣c⊤ x̄− c⊤ x̂

∣∣ >
2−2L.

Some general ideas for the proof: We may assume rank(A) = m
If x̄ ∈ F is an extreme point of F, then ∃ a basis B of A s.t. N := {1, 2, . . . , n} \ B
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x̄B = A−1
B b, x̄N = 0

(x̄B)j =
subdet[A′Bi

b]

det(AB)

≤
(m!)[maxi,j[AB : b]ij]m

1

[EN: not sure what the expression above was supposed to be.]
Take log2(·) of both sides.

Corollary (4.5). If we have x feasible in LP such that
∣∣c⊤x− ν(LP)

∣∣ ≤ 2−2L

then in O(n3) arithmetic operations, we can compute an exact optimal solution
of LP. (ν(LP) denotes the optimal value of LP.)

If x is an extreme point of F then it is optimal by Prop. 4.14. Otherwise, we
will round (purify) x to an extreme point of F with at least as good objective
value.
If x ∈ F is not an extreme point of F, then B := {j : xj > 0}. Then ∃d̄ nonzero
such that ABd̄ = 0 (B is not a basis of A). This gives d ∈ Qn \ {0} such that
Ad = 0. Choose a sign for d such that c⊤d ≤ 0.
ᾱ := max{α ∈ R+ : x + αd ≥ 0} (if c⊤d = 0 make sure d ̸≥ 0 – if d ≥ 0 replace
d by −d).
x ← x + ᾱd
New x has at least one fewer nonzero entry. So, this algorithm stops in at most
n iterations.
The last algorithm (rounding to an extreme point with at least as good objective
value) generalizes to SDP except that ᾱ may be irrational.
Prop 4.14 does not nicely generalize to SDPs.
Consider the SDP:

y1 ≥ 2,
(

1 y1
y1 y2

)
⪰ 0,

(
1 y2
y2 y3

)
⪰ 0, . . . ,

(
1 yn−1

yn−1 yn

)
⪰ 0

For every feasible solution, yn ≥ 22n−1 .

13 2018-06-19
In the case of LP problems having a feasible solution X̄ with objective value
⟨C, X̄⟩ ≤ ν(LP) + ε for small enough ε > 0 (log

(
1
ε

)
= O(poly(L))) allowed us

to compute an exact optimal solution in polynomial time in the Turing machine
model (moreover, it was a strongly polynomial time subroutine).
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Let’s generalize the purification algorithm to the SDPs

(P) inf ⟨C, X⟩
s.t. A(X) = b

X ⪰ 0

We are given X̄ feasible in (P).

Let G be the minimal face of Sn
+ which contains X̄. By lemma 2.25 ∃ a unique

linear subspace L ⊆ Rn s.t. relint(G) = {X ∈ Sn
+ : Null(X̄) = L}.

Find D ∈ Sn such that Null(D) ⊇ L and A(D) = 0, D ̸= 0. If no such D, then
STOP, X̄ is an extreme point of {X ⪰ 0 : A(X) = b}.

Choose the sign of D such that ⟨C, D⟩ < 0 (or ⟨C, D⟩ = 0 and D has a negative
eigenvalue).
ᾱ := sup{α : X̄ + αD ⪰ 0} (ᾱ may be irrational even if X̄, D are rational).
If ᾱ = +∞ then (P) is unbounded. STOP. (proof: X̄, D).
X̄ ←− X̄ + ᾱD.
Note that rank of X̄ decreases by at least one.
Repeat the iteration.

In SDP problems it is possible that

• every feasible solution has norm ≥ 22Ω(L)

• the feasible region contains a ball but the largest radius ball has radius
≤ 2−2Ω(L)

• it has a unique optimal solution that is irrational.

Ex:

inf
⟨[

0 1
1 0

]
, X
⟩

s.t.
⟨[

1 0
0 0

]
, X
⟩

= 1⟨[
0 0
0 1

]
, X
⟩

= 2

X ∈ S2
+

X̄ :=
[

1 −
√

2
−
√

2 2

]
is the unique optimal solution.

SDP-Feasibility: Given A1, A2, . . . , Am ∈ Sn ∩Zn×n, b ∈ Zm, does there exist
X̄ ∈ Sn

+ s.t. A(X̄) = b?
Open Problem: Is SDP-Feasibility in P?
Also open: Is SDP-Feasibility in NP?
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13.1 Approximation Algorithms Based on SDP
13.1.1 Approximation Algorithms for MaxCut

Given a simple graph G = (V, E).
Every U ⊆ V identifies a cut (U, V \U) in G. (U, V \U are called the shores
of the cut.)
The set of cut edges is

δ(U) := {ij ∈ E : i ∈ U, j ∈ V \U}.

Given a simple graph G = (V, E), and nonnegative weights wij ≥ 0 on the
edges, we want to find a cut in G of maximum total weight.

weight of the cut := ∑
ij∈δ(U)

wij

MAXCUT is NP hard.

13.1.2 An approximation algorithm for MaxCut

Ui := ∅, U2 := ∅
For each v ∈ V,
if ∑u∈U1

wuv > ∑u∈U2
wuv then U2 := U2 ∪ {v}

otherwise U1 := U1 ∪ {v}
Repeat until U1 ∪U2 = V.

Fact: this algorithm runs in strongly polynomial time and always delivers a cut
U such that weight of δ(U) ≥ 1

2 MaxCut.

weight of δ(U) ≥ 1
2 ∑

ij∈E
wij

≥ 1
2

MaxCut.

This algorithm can be viewed as derandomization of a beautiful and very simple
randomized algorithm (for each vertex independently flip a fair coin).

Compute the expected value of the total weight of a cut delivered by the ran-
domized algorithm.

Let’s write a formulation for MaxCut.

ui :=

{
1 if i ∈ U,
−1 if i ∈ V \U

.

max 1
4 ∑i,j wij(1− uiuj)

s.t. u ∈ {−1, 1}n
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wij := 0 ∀i, j s.t. ij /∈ E.
W ∈ Sn, Wij := wij ∀i, j ∈ V
Last problem is equivalent to

max − 1
4 ⟨W, uu⊤⟩ (+ 1

4 ⟨W, ēē⊤⟩)
s.t. u2

i = 1 ∀i ∈ V

(ē = 1)
Last problem is equivalent to

max − 1
4 ⟨W, X⟩ (+ 1

4 ⟨W, ēē⊤⟩)
s.t. diag(X) = ē

X ∈ Sn
+

rank(X) = 1 ←− nonconvex constraint

SDP relaxation:
max − 1

4 ⟨W, X⟩ (+ 1
4 ⟨W, ēē⊤⟩)

s.t. diag(X) = ē
X ∈ Sn

+

14 2018-06-21

G = (V, E), w ∈ RE
+ given. n := |V|, Wij :=

{
wij ∀{i, j} ∈ E
0 otherwise

, W ∈ Sn.

ui :=

{
+1, i ∈ U
−1, i ∈ V \U

(P) max − 1
4 ⟨W, X⟩ (+ 1

4 ⟨W, ēē⊤⟩)
s.t. diag(X) = ē

X ⪰ 0

(D) min ē⊤y (+ 1
4 ⟨W, ēē⊤⟩)

s.t. Diag(y)− S = − 1
4 W

S ⪰ 0

Both (P) & (D) have Slater points:

X̄ := I

η̄ := 1
4 ⟨W, ēē⊤⟩+ 1

ȳ := η̄ē

Diag(ȳ) + 1
4 W︸ ︷︷ ︸

=:S̄

≻ 0 by strict diag. dominance

Therefore, by Corollary 2.17, both (P) & (D) attain their optimal values and
their optimal values are the same. Suppose we solved (P) and have an optimal
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(or near optimal) solution X̄.

X̄ =: BB⊤, B ∈ Rn×n (B exists by Prop. 1.10 since X̄ ⪰ 0)
B⊤ =: [ν(1), ν(2), . . . , ν(n)], ν(i) ∈ Rn

X̄ij = ⟨ν(i), ν(j)⟩, ∀i, j

=⇒
∥∥∥ν(i)

∥∥∥
2
= 1, ∀i ∈ V (diag(X̄) = ē)

14.1 Randomized Hyperplane Technique (RHT)
Pick r ∈ Rn, ∥r∥2 = 1 uniformly randomly.

U := {v ∈ V : ⟨r, ν(i)⟩ ≥ 0}.

For a ∈ Rn, sign(a) ∈ {−1, 1}n is defined by [sign(a)]j :=

{
+1, if aj ≥ 0;
−1, if aj < 0

.

Lemma (5.1). With the above definitions,

Lemma (5.2). ∀u ∈ [−1, 1], we have

(i) arccos(u)
π ≥ ρ

2 (1− u)

(ii) 1− arccos(u)
π ≥ ρ

2 (1 + u)

where ρ ≈ 0.87856.

Theorem (5.4). For every graph G = (V, E) and w ∈ QE
+ we can obtain in

polynomial time a cut of total weight at least ρ(MaxCut value in G).

Proof. RLT has been derandomized.

Feasible region of the MaxCut SDP:

{X ∈ Sn
+ : diag(X) = ē} is called elliptope.

15 2018-06-26

15.1 Satisfiability, Max k-SAT, derandomization
variables: x1, x2, . . . , xn xj ∈ {0, 1} (0 = false, 1 = true)
literals: xj, x̄j (represents the complement of xj)
clauses: C1, C2, . . . , Cm Ci := some disjunction of literals e.g. C1 := (x1 ∨
x2 ∨ x̄5)
Formula in Conjunctive Normal Form (CNF):

C1 ∧ C2 ∧ · · · ∧ Cm
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Satisfiability: Given a formula, does there exist a truth assignment x ∈ {0, 1}n

such that the formula evaluates to 1 (“True”)?

Optimization version: Together with the formula, we are given w ∈ Rm
+ and we

want to find x ∈ {0, 1}n such that total weight of satisfied clauses is maximized
(Max SAT).

Max k-SAT: Max SAT where each clause has exactly k-literals.
2-SAT is easy; 3-SAT and Max 2-SAT are NP-hard.
Let’s give an Integer Programming formulation for Max SAT.

zi :=

{
1 if clause Ci is satisfied
0 otherwise.

max ∑m
i=1 wizi

s.t. zi ≤ ∑xj∈Ci
xj + ∑x̄j∈Ci

(1− xj), ∀i ∈ {1, 2, . . . , m} ←− the # of literals in Ci set to “True”
x ∈ {0, 1}n

z ∈ {0, 1}m

15.2 A Simple Randomized Approximation Algorithm for Max k-
SAT

David Johnson: author of Computers and Intractability, bin-packing
Johnson [1974]: p1, p2, . . . , pn are independently chosen probabilities.
Assign xj := 1 with probability pj.

ui : = probability that clause Ci is not satisfied
= ∏

x̄j∈Ci

pj ∏
xj∈Ci

(1− pj)

The expected total weight of satisfied clauses is

E[w, p] = E[
m

∑
i=1

wi Pr(Ci is satisfied)]

=
m

∑
i=1

wi(1− ui)

For pj =
1
2∀j, we get ui =

1
2k =⇒

E[w, 1
2 ē] = (1− 2−k)

m

∑
i=1

wi

≥ (1− 2−k) opt(Max k-SAT).
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(Assume clauses involve distinct variables; i.e. do preprocessing first.)

We can derandomize this algorithm. We will make choices for the values of xj’s
so that with each choice, the corresponding conditional expectation is at least
the overall expectation.

E[w; p] = pjE[w; p|xj = 1] + (1− pj)E[w; p|xj = 0]

=⇒ max{E[w; p|xj = 1], E[w; p|xj = 0]} ≥ E[w; p]

To derandomize the algorithm, we compute E[w; p|xj = 1], E[w; p|xj = 0] and
assign xj 0 or 1 depending on which conditional expectation is larger.

15.3 Generalizations to Quadratic Optimization over vertices of
hypercubes

Given W ∈ Sn

f̄ (W) := max x⊤Wx
s.t. x ∈ {−1, 1}n

Computing f̄ (W) is NP-hard.

max ⟨W, xx⊤⟩
s.t. diag(xx⊤) = ē

x ∈ Rn

SDP relaxation:

max ⟨W, X⟩
s.t. diag(X) = ē

X ⪰ 0

=︸︷︷︸
Both (P) and (D) have Slater points†

min ē⊤y

s.t. Diag(y) ⪰W

(†X̄ := I, ȳ = η̄ē, η̄ = ∥W∥2H)
Similarly, we define

¯
f (W) := min x⊤Wx

s.t. x ∈ {−1, 1}n, ¯
F(W) := min ⟨W, X⟩

s.t. diag(X) = ē
X ⪰ 0

= max ē⊤y
s.t. Diag(y) ⪰W

For approximation ratios, we will consider the relative approximation ratio (for
a given x̄ ∈ {−1, 1}n),

f̄ (W)− x̄⊤Wx̄
f̄ (W)−

¯
f (W)

.

Proposition (5.10). For every W ∈ Sn, we have

• f̄ (W) = −
¯
f (−W), F̄(W) = −

¯
F(−W)

•
¯
F(W) ≤

¯
f (W) ≤ f̄ (W) ≤ F̄(W)
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Special Case W ∈ Sn
+

f̄ (W) = max x⊤Wx
s.t. x ∈ {−1, 1}n

= max x⊤Wx
s.t. x ∈ [−1, 1]n

We are maximizing a convex function over a non empty closed convex set (when-
ever ∃ an optimal solution, then ∃ one that is an extreme point).

Suppose ∃ a maximizer x̄ that is not an extreme point of the feasible region
=⇒ ∃x(1), x(2) ̸= x̄ feasible, s.t. x̄ = 1

2 x(1) + 1
2 x(2). Let g(x) := x⊤Wx.

g is convex =⇒ g(x̄) ≤ 1
2 g(x(1)) + 1

2 g(x(2))

=⇒ max{g(x(1)), g(x(2))} ≥ g(x̄).

Choose extreme points x(1), x(2), . . . , x(k) such that x̄ = ∑k
i=1 λix(i), ∑k

i=1 λi =
1, λ ≥ 0.

16 2018-06-28
Finish reading Chapter 5 and read first two sections of Chapter 6.

For every W ∈ Sn
+,

f̄ (W) = max x⊤Wx
s.t. x ∈ {−1, 1}n

Special case: W ∈ Sn
+.

The maximum value of a convex function over a nonempty closed, bounded
convex set is attained at an extreme point of the feasible region.

Lemma (5.11). For every W ∈ Sn, we have

f̄ (W) = max ζ⊤Wζ
s.t. ζ = sign(Br)∥∥B⊤ei

∥∥
2 = 1 ∀i ∈ {1, 2, . . . , n}

∥r∥2 = 1
B ∈ Rn×n

r ∈ Rn

Proof. For every feasible solution of the RHS, the optimization problem has
ζ ∈ {−1, 1}n by definition of sign(·). Therefore, f (W̄) ≥ RHS.
Let x̄ ∈ {−1, 1}n such that f̄ (W) = x̄⊤Wx̄.
Pick any r̄ ∈ Rn s.t. ∥r̄∥2 = 1.

B̄⊤ei :=

{
r̄ if x̄i = 1
−r̄ if x̄i = −1.
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Let ζ̄ = sign(B̄r̄)︸ ︷︷ ︸
=x̄

.

Thus, the objective value of (ζ̄, B̄, r̄) in the RHS is x̄⊤Wx̄ = f̄ (W).

Lemma (5.12). For every W ∈ Sn, we have

f̄ (W) = max Er[ζ⊤Wζ]
s.t. ζ = sign(Br)∥∥B⊤ei

∥∥
2 = 1 ∀i ∈ {1, 2, . . . , n}

∥r∥2 = 1
B ∈ Rn×n

r ∈ Rn.

Proof. As in the proof of Lemma 5.11, in every feasible solution of the RHS,
ζ ∈ {−1, 1}n,

Er[ζ
⊤Wζ] ≤ max

ζ∈{−1,1}
ζ⊤Wζ = f̄ (W).

Thus, f̄ (W) ≥ RHS.
Let x̄ ∈ {−1, 1}n such that f̄ (W) = x̄⊤Wx̄.
B̄ := 1√

n x̄x̄⊤ (then, B̄B̄⊤ = x̄x̄⊤).

B̄⊤ei =

{ 1√
n x̄ if x̄i = 1

− 1√
n x̄ if x̄i = −1∥∥B̄⊤ei

∥∥
2 = 1 ∀i ∈ {1, 2, . . . , n}. Thus, B̄ is a feasible solution of the RHS.

Er[sign(B̄r)⊤W sign(B̄r)] = Er[
n

∑
i=1

n

∑
j=1

sign(r⊤ B̄ei) sign(r⊤ B̄ej)Wij]

=
n

∑
i=1

n

∑
j=1

WijEr[sign( r⊤B̄ei︸ ︷︷ ︸
=x̄i

(
r⊤ x̄√

n

)) sign( r⊤ B̄ej︸ ︷︷ ︸
=x̄j

(
r⊤ x̄√

n

))]

= x̄i x̄j.

If r⊤ x̄ ̸= 0 this is clear, noting that dim{r ∈ Rn : ∥r∥2 = 1, r⊤ x̄ = 0} = n− 2 <
n− 1, we conclude the equality.

For every matrix X ∈ Rn×n
∣∣Xij

∣∣ ≤ 1 ∀i, j, define arcsin(X) ∈ Rn×n compo-
nentwise:

[arcsin(X)]ij = arcsin(Xij).

Theorem (5.13). For every W ∈ Sn, we have

f̄ (W) = 2
π max ⟨W, arcsin(X)⟩

s.t. diag(X) = ē
X ⪰ 0.
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Proof. Note that for every feasible solution X̄ of the RHS problem, |X̄ij| ≤
1 ∀i, j ∈ {1, 2, . . . , n} (every 2-by-2 symmetric minor is positive semidefinite)
=⇒ RHS is well-defined.
Since the feasible region is nonempty and compact, the objective function is
continuous, max value in the RHS is attained.
Let B̄ ∈ Rn×n be an optimal solution of the problem from Lemma 5.12. Thus,

f̄ (W) = Er[sign(B̄r)⊤W sign(B̄r)].

B̄⊤ =: [ν(1)ν(2) · · · ν(n)]. Then,

Er[sign(r⊤ B̄ei︸ ︷︷ ︸
=r⊤ν(i)

) sign(r⊤ B̄ej︸ ︷︷ ︸
=r⊤ν(j)

)]

= −Pr[sign(r⊤ν(i)) ̸= sign(r⊤ν(j))] + Pr[sign(r⊤ν(i)) = sign(r⊤ν(j))]

= 1− 2 Pr[sign(r⊤ν(i)) ̸= sign(r⊤ν(j))]

= 1− 2
π arccos⟨ν(i), νj⟩ by Lemma 5.1.

Since arcsin(u) + arccos(u) = π
2 ∀u ∈ [−1, 1], thus,

Er[sign(rB̄ei)
⊤ sign(rB̄ej)] =

2
π arcsin ⟨ν(i), ν(j)⟩︸ ︷︷ ︸

=(B̄B̄⊤)ij

, ∀i, j ∈ {1, 2, . . . , n}.

So, f̄ (W) = 2
π ⟨W, arcsin(B̄B̄⊤)⟩.

X̄ := B̄B̄⊤ is a feasible solution of the RHS problem in the statement of the
theorem. Therefore, f̄ (W) ≤ RHS.
For the remaining inequality, let X̂ be an optimal solution of the RHS problem,
define B̂ ∈ Rn×n by X̂ =: B̂B̂⊤. Then, consider B̂ as a feasible solution of
the stochastic optimization problem from Lemma 5.12. Its objective value is
2
π ⟨W, arcsin(B̂B̂⊤)⟩ by the above expectation computation. Therefore, RHS
≤ f̄ (W) by Lemma 5.12.

Lemma (5.14). For every X ∈ Sn
+ such that

∣∣Xij
∣∣ ≤ 1 ∀i, j ∈ {1, 2, . . . , n}, we

have arcsin(X) ⪰ X.

Proof. Use a Taylor expansion of arcsin(u):

arcsin(u) =
∞

∑
k=0

(2k− 1)!!
(2k)!!(2k + 1)

u2k+1

=⇒ arcsin(X) =
∞

∑
k=0

(2k− 1)!!
(2k)!!(2k + 1)

X⊙2k+1

= X + 1
6 X⊙ X⊙ X + 3

40 X⊙ X⊙ X⊙ X⊙ X + · · · – all positive semidefinite.
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17 2018-07-10

Theorem (5.15). For every W ∈ Sn
+, 2

π F̄(W) ≤ f̄ (W) ≤ F̄(W).

Proof. We already noted the RHS inequality. For the LHS inequality, take an
optimal solution X̄ defining F̄(W). Then X̄ is feasible in the nonlinear SDP of
Theorem 5.13.

2
π F̄(W) = 2

π ⟨W, X̄⟩
≤ 2

π ⟨W, arcsin(X̄)⟩ since X̄ ⪰ 0, Lemma 5.13 and W ⪰ 0

≤ f̄ (W) since X̄ is feasible in nonlinear SDP.

Note that the MaxCut problem arises as a special case of W ∈ Sn
+. Given a

graph G = (V, E), and w ∈ RE, the weighted Laplacian of G with respect to w
as LG : RE → SV .

[LG(w)]ij :=


∑k : ik∈E wik if i = k
−wij if ij ∈ E
0 otherwise.

If w ∈ RE
+ then LG(w) ⪰ 0 (diagonally dominant).

W := 1
4LG(w) covers the MaxCut case.

Next, let’s consider W ∈ Sn (not necessarily PSD). Note that the dual SDPs
related to F̄(W) and

¯
F(W) have constraints that look like: [Diag(y)−W] ⪰

0, [W −Diag(y)] ⪰ 0. Consider

x⊤(W + Diag(y))x = x⊤Wx +
n

∑
i=1

yix2
i =︸︷︷︸

x∈{−1,1}⊤
x⊤Wx + ē⊤y︸︷︷︸

does not
depend on x

⟨(W + Diag(y)), X⟩ = ⟨W, X⟩+ y⊤ diag(X) =︸︷︷︸
diag(X)=ē

⟨W, X⟩+ ē⊤y.

We conclude ∀y ∈ Rn,

¯
f (W + Diag(y)) =

¯
f (W) + ē⊤y

f̄ (W + Diag(y)) = f̄ (W) + ē⊤y

¯
F(W + Diag(y)) =

¯
F(W) + ē⊤y

F̄(W + Diag(y)) = F̄(W) + ē⊤y.

Theorem (5.16). For every W ∈ Sn, we have

¯
F(W) ≤

¯
f (W) ≤ 2

π ¯
F(W)+ (1− 2

π )F̄(W) ≤ (1− 2
π )¯

F(W)+ 2
π F̄(W) ≤ f̄ (W) ≤ F̄(W).
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Proof. We have observed three of the inequalities. Let W ∈ Sn, let ȳ ∈ Rn be
an optimal solution of the SDP (dual to the one defining F̄(W)):

min ē⊤y
s.t. Diag(y)−W ⪰ 0.

We compute

F̄(W)−
¯
f (W) = ē⊤ȳ−

¯
f (W) by definition of y

= ē⊤ȳ +
¯
f (−W)

= f̄ (Diag(ȳ)−W︸ ︷︷ ︸
⪰0

)

≥ 2
π F̄(Diag(y)−W) by Theorem 5.15

= 2
π F̄(−W) + 2

π ē⊤ȳ

= − 2
π ¯

F(W) + 2
π F̄(W).

Thus,

¯
f (W) ≤ 2

π ¯
F(W) + (1− 2

π )F̄(W).

The remaining inequality can be proved similarly.

Corollary. For every W ∈ Sn, with c′ := (1− 2
π )¯

F(W) + 2
π F̄(W), we have

f̄ (W)− c′ ≤ f̄ (W)−
¯
f (W).

What if there is a linear term in the objective function? W ∈ Sn, q ∈ Rn given.

max
x

x⊤Wx + q⊤x

s.t. x ∈ {−1, 1}n =
max

x
x̃⊤W̃x̃

s.t. x̃ ∈ {−1, 1}n W̃ :=
[

0 1
2 q⊤

1
2 q W

]
x̃ :=

[
x0
x

]
∈ Rn+1.

x̃⊤W̃x̃ = x⊤Wx + x0(q⊤x).
(If x0 = 1→ okay. If x0 = −1, x ← −x.)
A related generalization leads to sufficient conditions for a “Matrix Cube” to be
contained in Sn

+: Given A0, A1, . . . , Ak ∈ Sn, fine the largest r ∈ R+ such that
{A0 + ∑k

i=1 yi Ai : ∥y∥2 ≤ r} ⊆ Sn
+.

The feasibility of the following SDP guarantees that r given below, works above:

(X(i) ± rAi) ∈ Sn
+; ∀i ∈ {1, 2, . . . , k}

k

∑
i=1

X(i) ⪯ A0.

There are related problems in algebraic geometry that go back to Grothendieck
(his work from 1950s). Consider, given W ∈ Rm×n,

max u⊤Wν
s.t. u ∈ {−1, 1}m

ν ∈ {−1, 1}n.

43



An SDP relaxation is

max ⟨W̄, X⟩
s.t. diag(X) = ē

X ∈ Sm+n
+

W̄ :=
[

0 W
W⊤ 0

]
∈ Sm+n.
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18 2018-06-12

18.1 Geometric Representations of Graphs
Given a graph G = (V, E), a geometric representation of G is v : V → R. A
unit distance representation of G = (V, E) is a geometric representation v of G
such that ∥v(i)− v(j)∥2 = 1∀i, j ∈ E.
Ex: G := K3 := clique on three vertices, d := 2.
tb(G) := the square of the smallest radius Euclidean Ball which contains a unit
distance representation of G.
Given a geometric representation v of G, define n := |V|,

B⊤ :=
[
v(1) v(2) . . . v(n)

]
∈ Rd×n

X := BB⊤ ∈ SV
+

Suppose ij ∈ E, then ∥v(i)− v(j)∥2 = 1 ⇐⇒ Xii + Xjj − 2Xij = 1.
∀i ∈ V, ∥v(i)∥2

2 ≤ t ⇐⇒ diag(X) ≤ tē.

Theorem (6.2). For every graph G = (V, E), tb(G) =

min t
s.t. diag(X)− tē ≤ 0

Xii + Xjj − 2Xij = 1 ∀ij ∈ E
X ∈ SV

+

When the graph G has many symmetries the underlying SDPs can be greatly
simplified. For example, let G be the Petersen Graph.

• For every pair of vertices, there is an automorphism of G which maps one
to the other.

• For every pair of edges, there is an automorphism of G which maps one
to the other.

• For every pair of non-edges, there is an automorphism of G which maps
one to the other.

Using these symmetries, the SDP for tb(GPetersen) reduces to an LP problem
with three variables.

Theorem (6.3). Suppose C, A1, A2, . . . , Am ∈ Sn
+ are such that they pairwise

commute. Then for every b ∈ Rm, the underlying SDP (P) and its dual (D) are
equivalent to a pair of primal-dual LP problems.

Proof. Suppose C, A1, A2, . . . , Am ∈ Sn
+ are such that they pairwise commute.

Then, ∃Q ∈ Rn×n orthogonal s.t. QC, Q⊤, QA, Q⊤, QAmQ⊤ are all diagonal
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matrices. For every b ∈ Rm,

(D) sup b⊤y
s.t. ∑m

i=1 yi Ai ⪯ C ⇐⇒ ∑m
i=1 yi(QAiQ⊤) ⪯ QCQ⊤

since Q, Q⊤ ∈ Am + (Sn
+)

⇐⇒ ∑m
i=1 yi diag(QAiQ⊤)

≤ diag(QCQ⊤)

Taking the dual of this resulting LP gives an LP problem equivalent to (P). Or,
we can do it directly:

inf ⟨C, X⟩
s.t. ⟨Ai, X⟩ = bi, ∀i ∈ {1, 2, . . . , m}

X ⪰ 0

inf ⟨QCQ⊤, QXQ⊤⟩
s.t. ⟨QAiQ⊤, QXQ⊤⟩ = bi, ∀i ∈ {1, 2, . . . , m}

X ⪰ 0

x̃ := diag(QXQ⊤) ∈ Rn. Then SDP (P) is equivalent to the LP

min diag(QCQ⊤)⊤ x̃
s.t. diag(QAiQ⊤)⊤ x̃ = bi, ∀i

x̃ ≥ 0.

A nicer version of unit distance representation:
th(G) := square of the minimum radius hypersphere which contains a unit
distance representation of G.

Theorem (6.4). For every graph G = (V, E),

th(G) = min t
s.t. diag(X) = tē

Xii + Xjj − 2Xij = 1 ∀ij ∈ E
X ∈ SV

+.

In fact, tb(G) = th(G), ∀ graphs G.
∀ graphs G, th(G) < 1

2 .
Let G = (V, E), n := |V|.
X̄ := 1

2 I − 1
2n ēē⊤ ∈ SV , diag(X̄) = 1

2 (1−
1
n )︸ ︷︷ ︸

< 1
2

ē

X̄ii + X̄jj − 2X̄ij = 1∀i ̸= j.
X̄ ⪰ 0 ⇐⇒ ∀h ∈ Rn, ∥h∥2 = 1, 0 ≤ h⊤X̄h,
h⊤X̄h = 1

2 −
1

2n ( ē⊤h︸︷︷︸
≤n

)2

︸ ︷︷ ︸
≥− 1

2

≥ 0.
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[
∣∣e⊤h

∣∣ ≤ n√
n , ∀h ∈ Rn : ∥h∥2 = 1]

=⇒ X̄ ∈ Sn
+, th(G) ≤ 1

2 (1−
1
n ) <

1
2 .

19 2018-07-14 (Make-up Lecture)

19.1 Hypersphere representation of G:
v : V → Rd,

∥v(i)∥2
2 = t ∀i ∈ V,

∥v(i)− v(j)∥2 = 1 ∀ij ∈ E.

19.2 Orthonormal representation of G = (V, E)

u : V → Rd such that

∥u(i)∥2 = 1 ∀i ∈ V
⟨u(i), u(j)⟩ = 0 ∀ij ∈ Ē

E := {ij : i, j ∈ V, i ̸= j, ij /∈ E}

The complement of G is G := (V, E).

Given G = (V, E) let v : V → Rd be a hypersphere representation of G with
t < 1

2 .

Claim: Let u : V → Rd+1, u(i) :=
√

2

[√
1
2 − t

v(i)

]
∀i ∈ V. Then u : V → Rd+1 is

an orthonormal representation of Ḡ.
Proof of claim:

∀i ∈ V, ∥u(i)∥2
2 = 2(( 1

2 − t) + ∥v(i)∥2
2︸ ︷︷ ︸

=t

) = 1

∀ij ∈ E, ⟨u(i), u(j)⟩ = 2( 1
2 − t + ⟨v(i), v(j)⟩︸ ︷︷ ︸

=t− 1
2

) = 0.

(∀ij ∈ E, ∥v(i)− v(j)∥2
2 = 2t− 2⟨v(i), v(j)⟩ = 1.) ♢

Also, every orthonormal representation u : V → Rd of G yields a hypersphere
representation via

v(i) :=
1√
2

u(i) ∀i ∈ V, of G.

19.3 Orthonormal Representations and Stable Set Problem
Given a graph G = (V, E),S ⊆ V is a stable set (independent set) in G if
∀ij ∈ E, at most one of i, j ∈ S .
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Note that S ⊆ V is a stable set in G ⇐⇒ S is a clique in G.
Incidence vector:

(xS )i :=

{
1 if i ∈ S
0 otherwise

}
∈ {0, 1}V

STAB(G) := conv{xS : S is a stable set in G} ← Stable set polytope of G

α(G) := max{|S| : S is a stable set in G} ← NP-hard to approximate let alone compute

α(G): stability number of G

α(G) = max{ē⊤x : x ∈ STAB(G)}

Elementary IP formulation based relaxation:

FRAC(G) := {x ∈ RV : 0 ≤ x ≤ ē, xi + xj ≤ 1 ∀ij ∈ E} ← Fractional Stable Set polytope
CLQ(G) := {x ∈ RV : 0 ≤ x, ∑

i∈C
xi ≤ 1 for all cliques C in V}

CLQ(G): clique polytope of G

TH(G) :=

{
x ∈ RV

+ : ∑
i∈V

[c⊤u(i)]2xi ≤ 1 ∀ ortho. repr. u : V → RV of G
and ∀c ∈ RV s.t. ∥c∥2 = 1

}
TH(G): Theta Body of G
TH(G) is the intersection of RV

+ with a collection (possibly uncountable) of
closed half spaces. Therefore, TH(G) is a closed convex set.

Theorem (6.6). For every graph G,

STAB(G) ⊆ TH(G) ⊆ CLQ(G) ⊆ FRAC(G).

Proof. We already observed CLQ(G) ⊆ FRAC(G).
TH(G) ⊆ CLQ(G): It suffices to show that for every clique C in G, the inequality
∑i∈C xi ≤ 1 arises as an orthonormal representation constraint for some u : V →
RV and some unit vector c.
Let C ⊆ V be an arbitrary clique in G. Pick any c ∈ RV s.t. ∥c∥2 = 1.
u(i) := c ∀i ∈ C, for the vertices i ∈ V \ C, pick an orthonormal system in
RV

+ ∩ {x ∈ RV : c⊤x = 0}. Then, u : V → RV is an orthonormal representation
of G. The orthonormal representation constraint for u and c is

1 ≥ ∑
i∈V

[c⊤u(i)]2xi

= ∑
i∈C

( c⊤c︸︷︷︸
=1

)2xi + 0

= ∑
i∈C

xi.
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STAB(G) ⊆ TH(G): We will pick an arbitrary stable set S in G and show that
xS ∈ TH(G). (Then since TH(G) is a convex set, by definition of the convex
hull and STAB(G), TH(G) ⊇ STAB(G).)
xS ∈ RV

+, pick an arbitrary orthonormal representation u : V → RV of G and
an arbitrary c ∈ RV such that ∥c∥2 = 1. Then

∑
i∈V

[c⊤u(i)]2(xS )i = ∑
i∈S

[c⊤u(i)]2

= ∥US c∥2
2

≤ ∥U c∥2
2︸ ︷︷ ︸

=∥c∥2
2=1

Aside:

U⊤S := [u(i) : i ∈ S ] ∈ RV×S

U⊤ := [u(i) : i ∈ S , ∗︸︷︷︸
complete to an
orthonormal ba-
sis for RV

] ∈ RV×V

Given G = (V, E), w ∈ RV
+,

θ(G, w) := max{w⊤x : x ∈ TH(G)}.

Note: max{w⊤x : x ∈ STAB(G)} ≤ θ(G, w) since STAB(G) ⊆ TH(G).

Theorem (6.7). For every graph G = (V, E) and for every w ∈ RV
+, the following

are all equal:

(i)
θ(G, w)

(ii)

min
∀u:V→RV
ortho. repr.

u of G,
∀c∈RV :∥c∥2=1

max
i∈V

{
wi

[c⊤u(i)]2

}
.

(iii)
min{λ1(S + W) : diag(S) = 0, Sij = 0 ∀ij ∈ E, S ∈ SV}

where W ∈ SV , Wij =
√wiwj ∀i, j ∈ V.

(iv)
max{⟨W, X⟩ : Xij = 0, ∀{i, j} ∈ E; Tr(X) = 1; X ⪰ 0}
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19.4 Stable Set Problem and Shannon Capacity of a Channel
Suppose two people are communicating over a noisy channel. We have an al-
phabet where some pairs of letters may be confused with each other. Construct
a graph G = (V, E) with one vertex for each letter and put an edge between ver-
tex i and vertex j if the corresponding letters may be confused with each other.
Then α(G) is the maximum number of letters we may use without confusion.
Two k-letter words may not be confused with each other if there is a position ℓ
in which these two words differ and the corresponding ℓ-th letters may not be
confused with each other.

Strong Products of Graphs: for G = (V, E), H = (W, F),

(G⊗ H) := (V ×W, E(G⊗ H))

E(G⊗ H) =

{(i, u), (j, v)} :
ij ∈ E and uv ∈ F or
ij ∈ E and u = v or
i = j and uv ∈ F


Gk := G⊗ G⊗ · · · ⊗ G︸ ︷︷ ︸

k times

The maximum number of k-letter words that can be communicated without
confusion is α(Gk).
Shannon Capacity of G := Θ(G) := limk→+∞[α(Gk)]

1
k .

Note that if S1 ⊆ V is a stable set in G and S1 ⊆ W is a stable set in H, then
(S1 × S2) is a stable set in G⊗ H.
=⇒ α(Gk) ≥ [α(G)]k.
This last observation implies Θ(G) ≥ α(G).
Ex: G = C5 (the 5-cycle), α(C5) = 2, α(C2

5) = 5.
Lovász [1979] proved Θ(C5) =

√
5 via computing θ(C5, ē).

Lemma (stronger version of 6.11). For all graphs G, H,

θ(G⊗ H) = θ(G)θ(H),

where θ(G) := θ(G, ē).

Theorem (6.12). ∀ graphs G = (V, E),

θ(G) =

max ⟨ēē⊤, X⟩
s.t. Xij = 0 ∀ij ∈ E,

Tr(X) = 1,
X ∈ SV

+

=

min t
s.t. diag(Z) = (t− 1)ē,

Zij = −1 ∀ij ∈ E,
Z ⪰ 0.

Moreover, α(G) ≤ Θ(G) ≤ θ(G) ≤ χ(G). Equality holds if G is perfect.

50



20 2018-07-17
k-colouring of G is σ : V → {1, 2, . . . , k} such that ∀ij ∈ E, σ(i) ̸= σ(j).
A graph G is perfect if for every vertex-induced subgraph H of G,

α(H) = χ(H).

Theorem (6.13). For every graph G = (V, E),

θ(G) =

max ⟨ēē⊤, X⟩
s.t. Xij = 0 ∀ij ∈ E,

Tr(X) = 1,
X ∈ SV

+

=

min t
s.t. diag(Z) = (t− 1)ē,

Zij = −1 ∀ij ∈ E,
Z ⪰ 0.

Moreover, α(G) ≤ Θ(G) ≤ θ(G) ≤ χ(G). Equality holds if G is perfect.

Note that SDPs in the statement of the theorem are dual to each other. Let
S ⊆ V be a stable set in G.

X :=
[ 1
S ēē⊤ 0

0 0

]
∈ SV

+ is feasible in the primal SDP.

The objective value of X is: (ē⊤ ē)2

|S| = |S|
=⇒ θ(G) ≥ α(G).
Take a k-colouring of G.

Zij :=

{
(k− 1) if colour(i) = colour(j)
−1 if colour(i) ̸= colour(j)

Z =



(k− 1) · · · (k− 1) −1 · · · −1 −1
... . . . ...

... . . . ...
(k− 1) · · · (k− 1) −1 · · · −1
−1 (k− 1) · · · (k− 1)

... . . . ...
(k− 1) · · · (k− 1)

... . . .
(k− 1) · · · (k− 1)

... . . . ...
−1 −1 (k− 1) · · · (k− 1)


Note that nonsingular symmetric minors of Z may have at most one row-column
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from each colour class. Therefore, every nonsingular symmetric minor of Z is:
(k− 1) −1 −1 · · · −1
−1 (k− 1)
... . . .
−1 · · · −1 (k− 1)


and all such minors are psd since they are diagonally dominant.

=⇒ Z ⪰ 0 and (Z, t := k) is feasible in the dual.

This proves θ(G) ≤ χ(G).
Recall for G ⊆ Rd the polar of G is G◦ := {s ∈ Rd : x⊤s ≤ 1 ∀x ∈ G}.

Theorem (6.9). For every graph G = (V, E),

[TH(G)]◦ ∩RV
+ = TH(G).

TH(G) can be represented as a projection of the feasible region of an SDP. For
every graph G = (V, E),

T̂H(G) := {Y ∈ S
{0}∪V
+ : Y00 = 1, diag(Y) = Ye0, Yij = 0 ∀ij ∈ E}.

Y ∈ T̂H(G) then

Y =



1 x1 x2 · · · xn
x1 x1 0 · · · 0

x2 0 x2
...

...
... . . . 0

xn 0 · · · 0 xn

 .

Theorem (6.10). For every graph G = (V, E),

TH(G) = {x ∈ RV : Ye0 =

(
1
x

)
, Y ∈ T̂H(G).}

An odd-hole is an odd cycle of length at least 5 with no chords.
An odd-antihole is the complement of an odd hole.

Theorem (6.8). Let G = (V, E) be a graph. Then TFAE:

(i) G is perfect

(ii) G is perfect

(iii) G does not contain an odd-hole, or odd-antihole

(iv) CLQ(G) = STAB(G)
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(v) defining linear inequality system for CLQ(G) is TDI (Totally Dual Inte-
gral)

(vi) TH(G) = STAB(G)

(vii) TH(G) = CLQ(G)

(viii) TH(G) is a polytope

(ix) defining system of T̂H(G) is TDI

(x) {x2
i − xi ∀i ∈ V; xixj ∀ij ∈ E} is (1, 1)-SOS (Algebraic Geometry)

(xi) ∀ probability distributions p on V,

H(p) = H(G, p) + H(G, p)

where H(G, p) is the graph entropy. H(p) := −∑i∈V pi ln pi. (Informa-
tion theory)

21 2018-07-19
Finish reading Chapters 7 & 9. Start reading chapters 10, 8, 12.

21.1 Lift-and-Project Methods for Combinatorial Optimization
Recall, for every graph G = (V, E) we have

T̂H(G) := {Y ∈ S
{0}∪V
+ : Y00 = 1, diag(Y) = Ye0, Yij = 0 ∀ij ∈ E}.

Consider Y ∈ T̂H(G) with rank(Y) = 1. Then

Y =

[
1 x⊤

x xx⊤

]
for some x ∈ {0, 1}V︸ ︷︷ ︸

(we used Ye0 = diag(Y))

∩ STAB(G)

xx⊤ =
[

x1x x2x · · · xnx
]
=
[
xixj : i, j ∈ V.

]
We can add more constraints on Y to tighten our relaxation of STAB(G) given
by TH(G). We can require that the columns of Y satisfy the constraints of
FRAC(G). We can enforce Yei, Y(e0 − ei) ∈ cone({1} ⊕ FRAC(G)) (the small-
est convex cone containing the argument.){(

x0
x

)
∈ R⊕RV : x0 = 1

}
Suppose P := {x ∈ Rn : Ax ≤ b, 0 ≤ x ≤ ē}

cone({1} ⊕ P) =
{(

x0
x

)
∈ R⊕RV : Ax ≤ x0b, 0 ≤ x ≤ x0 ē, x0 ≥ 0

}
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If P ̸= ∅,

cone({1} ⊕ P) = cl
{(

x0
x

)
∈ R⊕RV : Ax ≤ x0b, 0 ≤ x ≤ x0 ē, x0 > 0

}

LS+(G)︸ ︷︷ ︸
(Lovász & Schrijver)

=

{
x ∈ RV :

(
1
x

)
= Ye0, diag(Y) = Ye0,

Yei, Y(e0 − ei) ∈ cone({1} ⊕ FRAC(G))∀i ∈ V, Y ∈ S
{0}∪V
+

}
We can apply this construction to any combinatorial optimization problem.
Consider the 0,1 IP problem

max c⊤x
s.t. Ax ≤ b,

0 ≤ x ≤ ē,
x ∈ {0, 1}n.

P := {x ∈ Rn : Ax ≤ b, 0 ≤ x ≤ ē}.

We want max{c⊤x : x ∈ conv(P ∩ {0, 1}n)}.

LS+(G)︸ ︷︷ ︸
(Lovász & Schrijver)

=

{
x ∈ Rn :

(
1
x

)
= Ye0, diag(Y) = Ye0,

Yei, Y(e0 − ei) ∈ cone({1} ⊕ P)∀i ∈ {1, 2, . . . , n}, Y ∈ S1+n
+

}
Note that LS+ : subsets of [0, 1]n → convex subsets of [0, 1]n. We can apply
LS+ iteratively:

LSk+1
+ (P) := LSk

+(LS+(P)), k ∈ Z+, LS0
+(P) := P.

Take x ∈ LS+(P). Then ∃Y s.t.
(

1
x

)
= Yei︸︷︷︸
∈cone({1}⊕P)

+ Y(e0 − ei)︸ ︷︷ ︸
∈cone({1}⊕P)

for all

i ∈ {1, . . . , n}.(
1
x

)
= Yei︸︷︷︸
∈cone({1}⊕P)∩{( x0

x ):xi=x0}

+ Y(e0 − ei)︸ ︷︷ ︸
∈cone({1}⊕P)∩{( x0

x ):xi=0}

for all i ∈ {1, . . . , n}

Y(e0 − ei) =


1− xi

...
xi − xi = 0

...

 Yei =


xi
...
xi
...
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In the space of P, this means:

LS+(P) ⊆ conv[(P∩{x ∈ Rn : xi = 1})∪ (P∩{x ∈ Rn : xi = 0})]∀i ∈ {1, 2, . . . , n}.

We can show LS2
+(P) ⊆ conv[(P ∩ {x ∈ Rn : xi = 1, xj = 1}) ∪ (P ∩ {x ∈ Rn :

xi = 1, xj = 0}) ∪ (P ∩ {x ∈ Rn : xi = 0, xj = 1}) ∪ (P ∩ {x ∈ Rn : xi = 0, xj =
0})].
This leads to

Lemma (7.8). For every polytope P ⊆ [0, 1]n,

LSn
+(P) = conv(P ∩ {0, 1}n).

22 2018-07-24
Finish reading Chapters 10, 8. Read Chapter 12.

Theorem (7.10). Let P ⊆ [0, 1]d be a polytope. Then

LSd
+ = conv(P ∩ {0, 1}d).

G = (V, E) a given graph.

OC(G)︸ ︷︷ ︸
odd-cycle polytope

:= {x ∈ [0, 1]V : ∑
i∈H

xi ≤ ⌊ |H|−1
2 ⌋, for every odd-cycle H in G}

ANTI-HOLE(G) := {x ∈ [0, 1]V : ∑
i∈H

xi ≤ 2, for every odd anti-hole H in G}

An odd-wheel in G is a vertex induced subgraph H =: {v0, v1, . . . , v2k+1} such
that

WHEEL(G) := {x ∈ [0, 1]V : kxv0 +
2k+1

∑
i=1

xvi ≤ k, for every odd-wheel {v0, v1, . . . , v2k+1} in G}

1

23

4

5

0

Theorem (8.21). For every graph G,

LS+(G) ⊆ TH(G) ∩ OC(G) ∩WHEEL(G) ∩ANTI-HOLE(G).︸ ︷︷ ︸
Each of these require exponentially many lin-
ear inequalities to describe in the worst case
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LS+ has been generalized to solve min f (x) ( f continuous) over x ∈ F (F com-
pact) ∈ Rd.
A nice special case is PoP (Polynomial Optimization Problems). Let p0, p1, . . . , pm :
Rd → R be polynomials.

(PoP) inf p0(x)
s.t. pi(x) ≥ 0 ∀i ∈ {1, 2, . . . , m}

Every PoP can also be put into the form

(PoP) inf p0(x)
s.t. pi(x) = 0 ∀i ∈ {1, 2, . . . , m}

This problem is equivalent to infx∈Rd p0 + µ ∑m
i=1[pi(x)]2, where µ > 0 is a

parameter.
Deciding on the minimum value of a multivariate polynomial is equivalent to
deciding on the optimal value of a PoP.
Given z̄ ∈ R, is [p(x)− z̄] ≥ 0 ∀x ∈ Rd?
Hilbert’s 17th question was answered by Artin:

Theorem (10.1). Let p : Rd → R be a polynomial. Then p(x) ≥ 0 ∀x ∈ Rd iff
∃ polynomials h0, h1, . . . , hk : Rd → R such that

p(x) =
k

∑
i=1

(
hi(x)
h0(x)

)2

.

Obviously, if ∃ polynomials h1, . . . , hk such that p(x) = ∑k
i=1[hi(x)]2 then

p(x) ≥ 0 ∀x ∈ Rd. Given p : Rd → R polynomial of degree 2n,

[
1 x1 x2 · · · xd x2

1 x1x2 · · · xn
d
]︸ ︷︷ ︸

=:[g(x)]⊤

X︸︷︷︸
∈SN



1
x1
x2
· · ·
xd
x2

1
x1x2
· · ·
xn

d


N := (n+d

d ).
Using this equation, we get linear equations on the entries of X.

F (p) := {X ∈ SN
+ : [g(x)]⊤Xg(x) = p(x)︸ ︷︷ ︸

⇐⇒ A(x)=b

}

If F (p) ̸= ∅, then ∃B ∈ RN×N such that X = BB⊤ and p(x) =
∥∥B⊤g(x)

∥∥2
2 ≥

0.
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Theorem (10.2). Let z̄ ∈ R and p : Rd → R be a polynomial. Then, p(x)− z̄
is SoS (a sum of squares of polynomials) iff {X ∈ F (p) : X ⪰ z̄e1e⊤1 } ̸= ∅.

Recall

Theorem (8.21). ∀ graphs G,

LS+(G) ⊆ TH(G) ∩OC(G) ∩WHEEL(G) ∩ANTI-HOLE(G).

Note that every d-dimensional polytope has a unique facetal description in Rd.
p = {x ∈ Rd : Ax ≤ b}.

In fact, in some cases, we can represent some polytopes P ∈ Rd with Ω(2d)

facets as a projection of P̃ ⊂ RO(d2) with O(d3) facets. E.g. ∀ graphs G,
LS(G) = OC(G).
Given a polytope P ⊂ Rd, we can try to construct P̃ ⊂ RN such that P =
L(P̃ ∩U), where U ⊂ RN is an affine subspace and L : RN → Rd is a linear
map.
For example, P = {x ∈ Rd : Ax + Fu = b, u ≥ 0}. P̃ := {(x

u) : u ≥ 0}. If we
wanted to solve minx∈P c⊤x, we could equivalently solve

min [c⊤0]
[

x
u

]
s.t. Ax + Fu = b,

u ≥ 0.

Let P ⊂ Rd be a given polytope such that P = {x ∈ Rd : Ax ≤ b} (facetal
description).
Let m := |F | (# of facets), n := |V| (extreme points of P).
S ∈ Rm×n

+ , slack matrix of P, Sij := bi − a⊤i v(j) ∀i, j where v(j) ∈ V and a⊤i x ≤
bi is a facet.
Given S ∈ Rm×n

+ , a nonnegative factorization of S is F ∈ Rm×k
+ , V ∈ Rn×k

+

for some positive integer k such that S = FV⊤. Smallest such k is callled the
nonnegative rank of S (and P); rank+(S), rank+(P).
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Theorem (Yannakakis 1989). Let P ⊂ Rd be a polytope, and k := rank+(P).
Then every lifted representation of P uses at least k constraints. Moreover, P
has a lifted representation using at most (k+ d) constraints on (k+ d) variables.
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