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Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone interested in
the material. The goal is to provide an end-to-end resource that covers all material discussed in the course displayed in an
organized manner. If you spot any errors or would like to contribute, please contact me directly.

1 Chains and Zorn’s Lemma

Let (X,≤) be a poset. A chain is any subset C ⊆ X such that (C,≤) is totally ordered.

Office hours:

1. Today 2:30 - 3:20

2. Wednesday next week 2:30 - 4:30

Or, email nspronk@uwaterloo.ca

2 Cardinal arithmetic

i. :(

ii. R ∼︸︷︷︸
f

(−1, 1), f(x) = x/|x|+ 1 (exercise: exhibit f−1)

iii. a < b in R.(0, 1) ∼︸︷︷︸
g

(a, b), g(x) = a+ x(b− a)

Notation: N0 = |N| ("aleph naught"), c = |R| ("continuous")
Arithmetic: Let A,B be sets.

|A|+ |B| = |A tB|
|A||B| = |A×B|
|A||B| = |AB |(B 6= ∅, AB = {f : B → A | function })

A tA is two copies of A, ∼ A× {1, 2}

Properties

• (commutativity) |A|+ |B| = |B|+ |A|, |A||B| = |B||A|

• (distributivity) |A|(|B|+ |C|) = |A||B|+ |A||C|

A× (B t C) ∼ (A×B) t (A× C)

• (Exponential laws)

|A||B|+|C| = |A||B||A||C|, |A||B||C| = (|A||B|)|C|

(B 6= ∅ 6= C)

ABtC ∼ AB ×AC via ϕ 7−→ (ϕ|B , ϕ|C)

AB×C ∼ (AB)C via ϕ 7−→ (ϕ(b, ·) : C → A)

1
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Now, for sets A,B, define A � B if there is an injection f : A→ B.
Sometimes write A �︸︷︷︸

f

B. As above:

(reflexivity) A �︸︷︷︸
id

A

(transitivity) A � B,B � C =⇒ A � C

Seems reasonable to write |A| ≤ |B|, in this case.

Question: Is ≤ in cardinal numbers anti-symmetric?

Theorem 2.1 (Cantor-Bernstein-Schroder Theorem). If, for non-empty set A,B we have A � B,B � A, then A ∼ B. Ie. if
|A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.

Proof. Our assumption is that we have injections A �︸︷︷︸
ϕ

B, B �︸︷︷︸
ψ

A.

To avoid triviality, let us suppose that neither ϕ nor ψ is surjective. Thus ϕ(A) ( B, ψ ◦ ϕ(A) ( ψ(B) ( A.
Let A0 = A,A1 = ψ(B), A2 = ψ ◦ ϕ(A) and we inductively define An+2 = g(An), g = ψ ◦ ϕ.
Then A2 ( A1 ( A0, so by applying injection g,

A2 ( A1 ( A0

...
An+1 ( An ( An−1

Hence, we may decompose

A = A0 = (A0 \A1) ∪A1

= (A0 \A1) ∪ (A1 \A2) ∪A2

...

=

∞⋃
n=1

(An−1 \An) ∪A∞

where A∞ =
⋂∞
n=1An =

⋂∞
n=2An, we likewise observe

A1 =
⋃∞
n=2(An−1 \An) ∪A∞.

Picture:
A0 \A1A1 \A2 . . . A∞︸ ︷︷ ︸

A1︸ ︷︷ ︸
A0

Using definitions of the sets An (n ≥ 2), we have g(An−1 \An) = An+1 \An+2. Define

h : A0 → A1, h(x) =

{
g(x), if x ∈ An−1 \An, n odd
x, otherwise

Then h is a bijection. Thus
A = A0 ∼︸︷︷︸

h

A1 = ψ(B), B ∼︸︷︷︸
ψ

ψ(B)

so we conclude that A ∼ B.

Examples:

2
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1. Let a < b in R. Then [a, b) � R (obvious)
R ∼ (−1, 1) ∼ (0, 1) ∼ (a, b) � [a, b)
Ie. [a, b) � R and R � [a, b) so R ∼ [a, b)

3 2017-09-18

3.1 Last class: C.B.S Theorem

If A � B and B � A then A ∼ B.
Examples:

(i) P(N) ∼ R, i.e. |P(N)| = c.

P(N) ∼ {0, 1}N, via A 7−→ χA where χA(n)

{
1 , n ∈ A
0 , n /∈ A

("characteristic indicator")

{0, 1}N ∼ P(N), via (xk)∞k=1 7−→︸︷︷︸
injective

χA where
∞∑
k=1

xk
3k

= 0.x1x2x3 . . . (ternary representation)

[0, 1) ∼ {0, 1}N, 0.x1x2x3 · · · =
∞∑
k=1

xk
2k

(binary representation) (never allow 0.111 · · · = 1!) 7−→ (xk)∞k=1

P(N) ∼ {0, 1}N � [0, 1) � {0, 1}N ∼ P(N)

so, by C.B.S. Theorem, we have |P(N)| = |[0, 1)| = c = |R|.

(ii)

2nd lecture:

(iii) N ∼ Q ∼ N2

N � Q

Q � Z× N, via m

n
7−→ (m,n) (gcd(m,n) = 1)

Z× N ∼ N2 = N× N, as Z ∼ N

N2 � N, via (m,n) 7−→ 2m3n

Hence N � Q � Z× N ∼ N2 � N so, by C.B.S. Theorem, N ∼ Q ∼ N2.

Notation: We say that a set A is

• countable if A � N, i.e. |A| ≤ ℵ0

• denumerable if A ∼ N, i.e. |A| = ℵ0

Proposition 3.1 (surjectivity). Suppose X and Y are non-empty sets and there is a surjection g : X → Y . Then Y � X.

Proof. Let f : P(X) \ {∅} → X be a choice function (AC). For each y ∈ Y , we have g−1({y}) = {x ∈ X : g(x) = y} 6= ∅, as
g is surjective. Define h : Y → X be given by h(y) = f(g−1({y})) and h is injective, as if y1 6= y2, {y1} ∩ {y2} = ∅, so we see
that g−1({y1}) ∩ g−1({y2}) = ∅ too.

Theorem 3.1 (Comparison Theorem). Let X,Y be sets. Then either X � Y or Y � X.

3
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Proof. If X 6= ∅, then X � Y ; likewise if Y = ∅. Hence assume X 6= ∅ 6= Y . We let

∆ = {(A, f) : A ∈ P(X) \ {∅}, f ∈ Y A is an injection mapping from A to Y }

We observe that ∆ 6= ∅. If x ∈ A, y ∈ Y , then ({x}, x 7−→ y) ∈ ∆. On ∆ let

(A, f) � (B, g) ⇐⇒ A ⊆ B ⊆ X, g |A= f

Notice that � is reflexive, anti-symmetric, and transitive, hence is a partial order on ∆. Let Γ{(Ai, fi)}i∈I be a chain in
(∆,�). We let A =

⋃
i∈I Ai and f ∈ Y A be given by f(x) = fi(x) provided x ∈ Ai.

Notice that f is well-defined. Say x ∈ Ai and x ∈ Aj , then, since Γ is a chain, Ai ⊆ Aj , say, and fj |Ai
= fi.

Furthermore, if x1 6= x2 in A, then x1 ∈ Ai1 , x2 ∈ Ai2 , and we may suppose Ai1 ⊆ Ai2 . Then f(x1) = fi1(x1) = fi2(x1) 6=
fi2(x2) = f(x2), so f is an injection. Thus (A, f) ∈ ∆, and is an upper bound of Γ.
Thus, there is a maximal element (M, g) ∈ ∆, by Zorn’s Lemma.

Case #1: M = X. Then X = M�
g
Y .

Case #2: M ( X. We wish to see that g must be surjective. Suppose not, i.e., there is y0 ∈ Y \ g(M). Since M ( X, there
is x0 ∈ X \M . Define h : M ∪ {x0} → Y by

h(x) =

{
g(x) x ∈M
y0 x = x0

injective!

Then (M ∪ {x0}, h) ∈ ∆, and (M, g) � (M ∪ {x0}, h), contradicting maximality of (M, g). Thus, we have that that
g is surjective. Thus Y �︸︷︷︸

g−1

X.

Proposition 3.2. Let A be a set. Then TFAE:

(i) n ≤ |A| for all n ∈ N

(ii) ℵ0 ≤ |A| (A is infinite)

(iii) there is B ( A s.t. |B| = |A|

(iv) 1 + |A| = |A| (Hilbert hotel)

(v) ℵ0 + |A| = |A|

Proof. (i) ⇒ (ii) We have that for each n in N there is an injection ϕN : {1, . . . , n} → A. Inductively, define f : N→ A by

f(1) = ϕ1(1)

f(n+ 1) = ϕn+1(k)

where k = min j ∈ {1, . . . , n+ 1} : ϕn+1(j) /∈ {f(1), . . . , f(n)}.
Then f is injective by construction.
(ii) ⇒ (iii) We have N�fA. Let B = A \ {f(1)}. Define g : A→ B by

g(x) =

{
f(n+ 1) if x = f(n), n ∈ N
x otherwise

Then A ∼g B, i.e., |A| = |B|.
(iii) ⇒ (iv) We suppose there is x0 ∈ A \ B and B ∼ A. Thus A ∼ B � B ∪ {x0} � A so by C.B.S. Theorem A ∼ B and

4
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A ∼ B ∪ {x0} ∼ A t {1}, i.e. |A| = |A|+ 1.
(iv) ⇒ (i) We have {1} tA ∼ϕ A. Then ϕ(A) ( A. Thus ϕ ◦ ϕ(A) ( ϕ(A) ( A, and, by induction,

ϕ◦n(A) ( ϕ◦n−1(A) ( · · · ( A

ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸
n times

Hence |A| ≥ |A \ ϕ◦n(A)| ≥ n (at each stage above, we gain at least one point).
(ii) ⇒ (v) We have N �f A. Let g : N tA→ A,

g(x) =


f(2n) if x = n, n ∈ N
f(2n+ 1) if x = f(n) ∈ A,n ∈ N
x otherwise

(v) ⇒ (ii) ℵ0 ≤ ℵ0 + |A| = |A| by assumption.

Corollary 3.1. If A ∈ P(N), then either A is finite or denumerable.

Proof. Either n ≤ |A| for all n, or |A| < n (Comparison lemma).

Theorem 3.2 (Cantor). For any set X, |X| < |P(X)|.

Proof. :(

Cantor’s paradox: There is no “set” of all sets.

4 2017-09-22

4.1 Metric Spaces

Example (French railroad / metro metric): Suppose we have a set X 6= ∅, and a function f : X → [0,∞) which satisfies
f−1({0}) = {p0}. Notice, then, that f(x) > 0 if x ∈ X \ {p0}.

df : X ×X → [0,∞), df (x, y) = f(x) + f(y)

if x 6= y, 0 if x = y.
Easy exercise: this is a metric.
(Belongs to family of weighted graph metrics.)

||x||p = (|x1|p + · · ·+ |xn|p)
1
p

xp =

{
ep log x x > 0
0 x = 0

Lemma 4.1. Let α, β ≥ 0 in R, 1 < p <∞ and q is chosen so that 1
p + 1

q = 1 (ie q = p
p−1 ) then

αβ ≤ αp

p
+
βq

q

with equality when αp = βq.

Proof. Consider the graph of y = xp−1 (assume p ≥ 2).

x = y1p− 1 = yqp = yq−1

5
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Then

αβ ≤
∫ α

0

xp−1dx︸ ︷︷ ︸
A1

+

∫ β

0

yq−1dy︸ ︷︷ ︸
A2

(Equality holds only if β = αp−1 ⇒ β1q − 1⇒ βq = αp)

=
αp

p
+
βq

q

Holder’s Inequality

5 2017-09-25

Lemma: α, β ≥ 0 in R, 1 < p <∞ with q satisfying 1
p + 1

q =⇒ αβ ≤ αp

p + βq

q

Holder’s Inequality: If x, y ∈ Rn, 1 < p <∞ and q satisfies 1
p + 1

q = 1, then

|
n∑
j=1

xjyj | ≤︸︷︷︸
1-ineq. of |·|

n∑
j=1

|xj ||yj | ≤

 n∑
j=1

|xj |p
 1

p
 n∑
j=1

|yj |p
 1

p

:= ||x||p||y||q

Proof. If ||x||p||y||q = 0, then x = 0 or y = 0 and the inequality is trivial. Assume ||x||p||y||q 6= 0. For j = 1, . . . , n, let

αj =
|xj |
||x||p

, βj =
|yj |
||y||q

.

Then

1

||x||p||y||q

n∑
j=1

|xj ||yj | =
n∑
j=1

αjβj

≤
n∑
j=1

[
αpj
p

+
βqj
q

]
by lemma

=
1

p

n∑
j=1

αpj +
1

q

n∑
j=1

βqj

=
1

p||x||pp

n∑
j=1

|xj |p +
1

q||x||qq

n∑
j=1

|yj |q

=
1

p
+

1

q

= 1

Theorem 5.1 (Minkowski’s Inequality). Let x, y ∈ Rn and 1 < p <∞. Then

||x+ y||p ≤ ||x||p + ||y||p.

6
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Proof. If x+ y = 0 then this is trivial, so suppose x+ y 6= 0.

||x+ y||pp =

n∑
j=1

|xj + yj |p

=

n∑
j=1

|xj + yj ||xj + yj |p−1

≤
n∑
j=1

(|xj |+ |yj |)(|xj + yj |p−1)

=

n∑
j=1

|xj ||xj + yj |p−1 +

n∑
j=1

|yj ||xj + yj |p−1

≤

 n∑
j=1

|xj |p
 1

p
 n∑
j=1

|xj + yj |(p−1)q

 1
q

+

 n∑
j=1

|yj |p
 1

p
 n∑
j=1

|xj + yj |(p−1)q

 1
q

= (||x||p + ||y||p)

 n∑
j=1

|xj + yj |(p−1)q

 1
q

We have
1

p
+

1

q
= 1 =⇒ 1

q
= 1− 1

p
=
p− 1

p
=⇒ p = q(p− 1)

and thus

||x+ y||pp ≤ (||x||p + ||y||p)

 n∑
j=1

|xj + yj |p
 1

q

= (||x||p + ||y||p)||x+ y||
p
q
p

Now, divide ||x+ y||
p
q
p 6= 0 to get

||x+ y||p = ||x+ y||p−
p
q

p

≤ ||x||p + ||y||p

(since p− p
q = p(1− 1

q ) = 1).

Corollary 5.1. Given 1 < p <∞, || · ||p is a norm on Rn.

Proof. Clearly || · ||p is non-negative and non-degenerate. If α ∈ R, x ∈ Rn then

||αx||p = (

n∑
j=1

|αxj |p)
1
p

= |α|(
n∑
j=1

|xj |p)
1
p

= |α|||x||p

Finally, subadditivity is provided by Minkowski’s inequality.

|x|p = ep log |x|

7
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5.1 The `p-spaces

Consider RN = {x = (xk)∞k=1 : xk ∈ R} which is a R-vector space:

(xk)∞k=1 + (yk)∞k=1 = (xk + yk)∞k=1, α(xk)∞k=1 = (αxk)∞k=1.

We let for 1 ≤ p <∞

`p = {x = (xk)∞k=1 ∈ RN :

∞∑
k=1

|xk|p = lim
n→∞

n∑
k=1

|xk|p <∞}

and
`∞ = {x = (xk)∞k=1 sup

k∈N
|xk| <∞}.

On `p we define

||x||p =

{
(
∑n
j=1 |xj |p)

1
p , if 1 ≤ p <∞∑

k∈N |xk| , if p =∞

Theorem 5.2. Let 1 ≤ p <∞. Then `p is a R-subspace of RN and || · ||p is a norm.

Proof. We prove these together. Suppose that x, y ∈ `p. Then

||x+ y||p =

( ∞∑
k=1

|xk + yk|p
) 1

p

if ∞, treat ∞
1
p =∞

=

(
lim
n→∞

n∑
k=1

|xk + yk|p
) 1

p

= lim
n→∞

(
n∑
k=1

|xk + yk|p
) 1

p

x 7−→ x
1
p is continuous on [0,∞), if x→∞, x

1
p →∞

≤ lim
n→∞

(
n∑
k=1

|xk|p
) 1

p

+ lim
n→∞

(
n∑
k=1

|yk|p
) 1

p

Minkowski applied on each n

=

(
lim
n→∞

n∑
k=1

|xk|p
) 1

p

+

(
lim
n→∞

n∑
k=1

|yk|p
) 1

p

continuity again

=

( ∞∑
k=1

|xk|p
) 1

p

+

( ∞∑
k=1

|yk|p
) 1

p

= ||x||p + ||y||p
<∞

Thus x+ y ∈ `p, and we get subadditivity of || · ||p.
We note that non-negativity and non-degeneracy of || · ||p are obvious. Likewise, the | · |-homogeneity is straightforward.

Theorem 5.3. (`∞, || · ||∞) is a normed vector space.

8
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Proof. If x, y ∈ `∞ then

||x+ y||∞ = sup
k∈N
|xk + yk|

≤ sup
k∈N

(|xk|+ |yk|)

≤ sup
j,k∈N

(|xj |+ |yk|)

= sup
j∈N
|xj |+ sup

k∈N
|yk|

= ||x||∞ + ||y||∞

Other properties are very easy.

6 2017-09-29

i) X 6= ∅ s.t. |X| ≥ 2

discrete metric d(x, y) =

{
0 x = y

1 x 6= y

For x0 ∈ X,

B(x, ε) =

{
{x0} 0 < ε ≤ 1

x ε > 1

B[x, ε] =

{
{x0} 0 < ε < 1

x ε ≥ 1

ii) (geometry of balls in R2)
1 ≤ p ≤ ∞, Bp(0, 1) = {x ∈ R2 : dp(0, x) = ‖x‖p < 1}

Proposition 6.1. (X, d) a metric space.

i) X,∅ are both open and closed.

ii) If {Ui}i∈I is a family of open sets, then
⋃
i∈I Ui is open.

iii) If {U1, . . . , Un} is a finite family of open sets, then
⋂n
i=1 Ui is open.

iv) If {Fi}i∈I is a family of closed sets, then
⋂
i∈I Ui is closed.

v) If {U1, . . . , Un} is a finite family of closed sets, then
⋃n
i=1 Ui is closed.

Proof. i) Let x ∈ X, then x ∈ B(x, 1) ⊆ X, so X is open. So ∅ = X \X, X = X \∅ are closed.

ii) Let x ∈ U =
⋃
i∈I Ui. Then there is some i0 in I s.t. x ∈ Ui0 , which is open, so there is εx > 0 s.t. x ∈ B(x, εx) ⊆ Ui0 ⊆ U .

iii) Let x ∈ V =
⋂n
i=1 Ui. Then for each i = 1, . . . , n, there is εi > 0 s.t. B(x, εi) ⊆ Ui. Let ε = min{ε1, . . . , εn} =⇒

B(x, ε) ⊆
⋂n
i=1B(x, εi) ⊆ V .

iv), v) De Morgan’s Laws.

Given a metric space (X, d), A ⊆ X, we define the boundary of A:

∂A = {x ∈ X : ∀ε > 0, B(x, ε) ∩A 6= ∅, B(x, ε) \A 6= ∅}.

9
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Remark: ∂A = ∂(X \A).
Interior of A :

A◦ =
⋃
{U ⊆ X : U ⊆ A and U is open}.

Proposition 6.2 (characterizations of interior). If (X, d), A are as above then

A◦ = {x ∈ X : ∃εx > 0 s.t. B(x, εx) ⊆ A}
= A \ ∂A.

Proof. Let x ∈ A. Then either:

• for some εx > 0, B(x, εx) ⊆ A =⇒ x ∈ A◦, or

• ∀ε > 0, B(x, ε) \A 6= ∅ =⇒ since x ∈ A ∩B(x, ε), x ∈ ∂A.

Since A◦ ⊆ A, the proposition holds.

Def: (X, d) a metric space, (xn)∞n=1 ⊆ X and x0 ∈ X. Say (xn)∞n=1 converges to x0, i.e. limn→∞ xn = x0 or xn
n→∞−−−−→ x0 if

∀ε > 0, ∃nε ∈ N s.t. n ≥ nε =⇒ d(x0, xn) < ε.
Remark: The limit, if it exists, is unique. Suppose x0 = limn→∞ xn, y0 = limn→∞ xn, then given ε > 0, ∃nε, nε′ in N s.t.

n ≥ nε =⇒ d(x0, xn) < ε

n ≥ nε′ =⇒ d(y0, xn) < ε.

Now if n ≥ max{nε, nε′}, then

d(x0, y0) ≤ d(x0, xn) + d(xn, y0) < ε

=⇒ d(x0, y0) = 0, so x0 = y0.

Example: Let (V, ‖·‖) be a normed vector space. A subset {en}∞n=1 ⊆ V is a Schauder basis if for each x ∈ V , ∃ a unique
sequence {xn}∞n=1 s.t. x = limn→∞

∑n
k=1 xkek in V .

In `p, 1 ≤ p <∞, let en = (0, . . . , 0, 1︸︷︷︸
n-th place

, 0, . . . ).

Let, for (X, d), A as above, the set of accumulation points (cluster points) be given as

A′ = {x ∈ X : ∀ε > 0, B(x, ε) \ {x}︸ ︷︷ ︸
punctured ball

∩A 6= ∅.}

Call elements of A \A′ isolated points.

Proposition 6.3. Given (X, d), A as above, we have

A′ = {x ∈ X : x = lim
n→∞

xn, (xn)∞n=1 ⊆ A \ {x}.}

Proof. If x ∈ A′, let x1 ∈ (B(x, 1) \ {x}) \A, and xn+1 ∈ (B(x, εn) \ {x}) \A, where εn = min{ 1
n , d(x, xn)}.

Then x = limn→∞ xn while (xn)∞n=1 ⊆ A \ {x}. Note x1, x2, . . . are distinct.
Converse direction: definition of limits.

7 2017-10-02

Def: Given a metric space (X, d) and A ⊆ X, define the closure of A by

Ā = ∩{F ⊆ X : A ⊆ F, F is closed in X.}

10
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Of course A◦ ⊆ A ⊆ Ā.

Theorem 7.1 (characterization of the closure). Given a metric space (X, d), A ⊆ X, the following sets are the same:

Ā, A ∪ ∂A,A ∪A′

("meet" set) AM = {x ∈ X : for any ε > 0, B(x, ε) ∩A 6= ∅}
("limit" set) AL = {x ∈ X : x = limn→∞ xn, where (xn)∞n=1 ⊆ A}
(The notations AL, AM will not be used afterwards; we shall use Ā.)

Proof. We have

Ā = ∩{F ⊆ X : A ⊆ F, F closed }
= ∩{X ⊆ U : U ⊆ X \A,U open in X}
= X \ U{U : U ⊆ X \A,U open in X}
= X \ [(X \A)o] complement of interior
= X \ [(X \A) \ ∂(X \A)] characterization of (X \A)o

= X \ [(X \A) \ ∂A]

= A ∪ ∂A

(∩i∈I(X \ Ui) = X \ ∪i∈IUi)
We thus have Ā = A ∪ ∂A.
Now if x ∈ A ∪ ∂A, then for each ε > 0, we have that B(x, ε) ∩ A 6= ∅ [i.e. either x ∈ A so x ∈ A ∩ B(x, ε), or x ∈ ∂A, so
B(x, ε) ∩A 6= ∅]. Thus A ∪ ∂A ⊆ AM . Conversely, if x ∈ AM , then, either

• there is ε > 0 so B(x, ε) ⊂ A =⇒ x ∈ Ao ⊆ A, or

• for every ε > 0 we have B(x, ε) \A 6= ∅ in which case x ∈ ∂A.

Hence, x ∈ AM =⇒ x ∈ A ∪ ∂A so AM ⊆ A ∪ ∂A.
If x ∈ A ∪A′, then for each ε > 0, we have B(x, ε) ∩A 6= ∅. Indeed, as above, either x ∈ A, so for any ε > 0, x ∈ B(x, ε) ∩A,
or x ∈ A′, so B(x, ε) ∩A ⊇ (B(x, ε) \ {x}) ∩A 6= ∅. Hence A ∪A′ ⊆ AM .
The definition of the limit of a sequence shows that AM = AL.
Finally, consider

X \ (A ∪A′) ⊆ {x ∈ X : there exists εx > 0 s.t. B(x, εx) ∩A = ∅, B(x, εx) ⊆ X \A}
= (X \A)o =⇒ X \ [(X \A)o] ⊆ X \ [X \ (A ∪A′)].

Hence

Ā = X \ [(X \A)o] ⊆ X \ [X \ (A ∪A′)]
= A ∪A′.

Hence Ā ⊆ A ∪A′ ⊆ AM = Ā, so Ā = A ∪A′.

7.1 Continuity

Def: Let (X, dX) and (Y, dY ) be metric spaces f : X → Y and x0 ∈ X. We say that f is continuous at x0 if given ε > 0, there
is δ > 0 s.t. dX(x, x0) < δ =⇒ dY (f(x), f(x0)) < ε. (?)
We say that f is continuous on X if it is continuous at each point.
Note:

(?) ⇐⇒ f(B(x0, δ)) ⊆ B(f(x0), ε)

⇐⇒ B(x, δ) ⊆ f−1(B(f(x0), ε))

11
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Notation: In a metric space, a set N is a neighbourhood of a point x0 if x0 ∈ No (interior).

Theorem 7.2 (characterization of continuity at a point). If (X, dX), (Y, dY ), f : X → Y, x ∈ X are as above, then TFAE:

(i) f is continuous at x0

(ii) for any neighbourhood N of f(x0) in (Y, dY ), we have f−1(N) is a neighbourhood of x0 in (X, dX)

(iii) if x0 = limn→∞ xn in (X, dX) =⇒ f(x0) = limn→∞ f(xn) in (Y, dY ).

Proof. (i) =⇒ (ii) Given a neighbourhood of f(x0), there exists ε > 0 for which B(f(x0), ε) ⊆ N . By assumption of continuity,
there is δ > 0 s.t.

B(x0, δ) ⊆ f−1(B(f(x0), ε))

⊆ f−1(N), from above.

Thus f−1(N) is a neighbourhood of x0.
(ii) =⇒ (i) =⇒ (iii) Given ε > 0, B(f(x0), ε) is a neighbourhood of f(x0), so f−1(B(f(x0), ε)) is a neighbourhood of x0 and
hence there is δ > 0 s.t. B(x0, δ) ⊆ f−1(B(f(x0), ε)), which gives (i).
Now, if x0 = limn→∞ xn in (X, dX) then there is nδ in N s.t. if n ≤ nδ, xn ∈ B(x0, δ). But then for n ≤ nδ, we have

f(xn) ∈ f(B(x, δ)) ⊆ B(f(x0), ε)

and hence f(x0) = limn→∞ f(xn).
(iii) =⇒ (i) (contrapositive) If (i) fails, then there exists ε > 0 s.t. for any δ > 0, B(x0, δ) 6⊂ f−1(B(f(x0), ε)).
Hence for each n ∈ N we may find xn ∈ B(x0,

1
n )\f−1(B(f(x0), ε)). Given ε′ > 0, let nε′ satisfy nε′ ≤ 1

ε , thus limn→∞ xn = x0.
However, each f(xn) /∈ B(f(x0), ε), so f(x) does not go to.

8 2017-10-06

Corollary 8.1. A metric space is complete if whenever for any Cauchy sequence, we may find a converging subsequence.

Nested Intervals Theorem, Bolzano-Weierstrauss Theorem

Theorem 8.1. (`p, ‖·‖p) (1 ≤ p <∞) is complete as a metric space.

Def: A normed space (V, ‖·‖) is called a Banach space provided that V is complete w.r.t. metric d(x, y) = ‖x− y‖.
(`p, ‖·‖p) is a Banach space.

9 2017-10-16

Theorem 9.1. The space of continuous bounded functions under the uniform metric, (Cb(f), ‖·‖∞), is a Banach space.

Proof. (I) For x ∈ X, (fn(x))∞n=1 is Cauchy and admits a limit, so this defines f : X → R. The hard part is showing that f is
continuous.
Next, show f is bounded, so f ∈ Cb(X).
(II) limn→∞‖f − fn‖∞ = 0, ie. limn→∞ fn = f uniformly in Cb(X).

9.1 Characterizations of Completeness

Def: If (X, d) is a metric space, ∅ 6= A ⊆ X, we let the diameter of A be given by

diam(A) =
∑
x,y∈A

d(x, y) (may be ∞)

12
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Proposition 9.1. If (X, d), A are as above then diam(Ā) = diam(A).

Proof. If x, y ∈ Ā, ε > 0, then there are x′, y′ in A s.t. d(x, x′) < ε
2 , d(y, y′) < ε

2 (using meet set characterization of Ā). Then

d(x, y) ≤ d(x, x′) + d(x′, y′) + d(y′, y)

≤ ε

2
+ diam(A) +

ε

2
= diam(A) + ε. (Assume diam(A) <∞).

Thus, since ε > 0 is arbitrary, d(x, y) ≤ diam(A) =⇒ diam(Ā) = supx,y∈A d(x, y) ≤ diam(A). Since A ⊆ Ā,diam(A) ≤
diam(Ā).

Theorem 9.2 (Nested set characterization of completeness). Let (X, d) be a metric space. Then (X, d) is complete ⇐⇒
whenever we have closed sets,

• F1 ⊇ F2 ⊇ F3 ⊇ · · ·

• diamFn
n→∞−−−−→ 0

then
⋂∞
n=1 Fn 6= ∅.

Proof. (=⇒) For each n, choose xn ∈ Fn. Given ε > 0, choose nε in N s.t. n ≥ nε =⇒ diam(Fn) < ε. Now, if n,m ≥ nε we
have

xn ∈ Fn ⊆ Fnε
, xm ∈ Fm ⊆ Fnε

=⇒ d(xn, xm) ≤ diam(Fnε
) < ε

so (xn)∞n=1 is Cauchy, and has limit x = limn→∞ xn. Since each Fm = F̄m (closed), and we have for n ≥ m,xn ∈ Fm, x =
limn→∞ xm ∈ Fm for all m. Hence x ∈

⋂∞
m=1 Fm (ie. 6= ∅).

(⇐=) Let (xn)∞n=1 ⊂ X be Cauchy, let for n in N, Fn = {xk}k≥n. Then each Fn is closed and Fn ⊇ Fn+1 for each n. Further,
diamFn = diam{xk}k≥n (last proposition). Given ε > 0, there is nε in N so n,m ≥ nε =⇒ d(xn, xm) < ε. So for n ≥ nε, we
have diam{xk}k≥n = supk,l≥n d(xk, xl) < ε.

10 2017-10-18

Continuing the proof that (Cb(f), ‖·‖∞) is a Banach space from last time:

Theorem 10.1. The space of continuous bounded functions under the uniform metric, (Cb(f), ‖·‖∞), is a Banach space.

Proof. (I) For x ∈ X, (fn(x))∞n=1 is Cauchy and admits a limit, so this defines f : X → R.
f is continuous: let x ∈ X, and let ε > 0. Choose nε ∈ N so that

n,m ≥ nε =⇒ |fn(x)− f(x)| < ε

4
and ‖fn − fm‖∞ <

ε

4
.

Choose δ > 0 so that for x, y ∈ X,
d(x, y) < δ =⇒ |fnε(x)− fnε(y)| < ε

4
.

Then, given y ∈ B(x, δ), let ny ∈ N so that ny ≥ nε and

n ≥ ny =⇒ |fn(y)− f(y)| < ε

4
.

Then for n ≥ ny ≥ nε we have

|f(x)− f(y)| ≤ |f(x)− fnε
(x)|+ |fnε

(x)− fnε
(y)|+ |fnε

(y)− fn(y)|+ |fn(y)− f(y)|

<
ε

4
+
ε

4
+
ε

4
+
ε

4
= ε.

13
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Also, f is bounded because

|f(x)| ≤ |f(x)− fn(x)|+ |fn(x)|
≤ |f(x)− fn(x)|+ ‖fn‖∞
= o(1) +M.

(II) Show that this is actually the limit (i.e. limn→∞‖f − fn‖∞ = 0).
Let ε > 0. Choose nε ∈ N so that m,n ≥ nε =⇒ ‖fm − fn‖∞ < ε

2 . Also, given x ∈ X, choose nx ≥ nε so that
n ≥ nx =⇒ |fn(x)− f(x)| < ε

2 . Then, for n ≥ nε, find m ≥ nx ≥ nε and observe that

|f(x)− fn(x)| ≤ |f(x)− fm(x)|+ |fm(x)− fn(x)|

<
ε

2
+ ‖fm − fn‖∞

= ε.

Example: Consider (`p, ‖·‖p), 1 ≤ p <∞. Let en = (0, . . . , 0, 1︸︷︷︸
n-th place

, 0, . . . ) and let Fn = {ek}k≥n ⊆ `p.

• Each Fn is closed (easy exercise)

• F1 ⊇ F2 ⊇ · · ·

• diamFn = 2
1
p (easy computation) (Finite diameter is not sufficient for Nested set characterization)

Notice that
⋂∞
n=1 Fn = ∅.

Theorem 10.2 (abstract M -test). Let (V, ‖·‖) be a normed vector space. Then (V, ‖·‖) is a Banach space ⇐⇒ for every
(xk)∞k=1 ⊂ V with

∑∞
k=1‖xk‖ = limn→∞

∑n
k=1‖xk‖ converging, has that

∑∞
k=1 xn = limn→∞

∑n
k=1 xk converges in (V, ‖·‖)

[ie. V satisfies that “absolute convergence” =⇒ convergence.]

Proof. (=⇒) Suppose
∑∞
k=1‖xk‖ converges. Consider (

∑n
k=1 xk)∞n=1 ⊂ V . We have for m < n that∥∥∥∥∥

n∑
k=1

xk −
m∑
k=1

xk

∥∥∥∥∥ ≤
n∑

k=m+1

‖xk‖︸ ︷︷ ︸
partial tail of converging series in R

and hence (
∑n
k=1 xk)∞n=1 is Cauchy in (V, ‖·‖), and thus converges.

(⇐=) Suppose (xn)∞n=1 is a Cauchy seq in (V, ‖·‖). Let n1 in N be so m,n ≥ n1 =⇒ ‖xm − xn‖ < 1, and, inductively, choose
nk+1 in N s.t. nk+1 ≥ nk and m,n ≥ nk+1 =⇒ ‖xn − xm‖ < 1

2k .
Let y0 = xn1 , yj = xnj+1 − xnj , j ∈ N.
Then, each ‖yj‖ =

∥∥xnj+1
− xnj

∥∥ < 1
2j−1 , as nj+1 > nj ≥ n, so

∞∑
i=0

‖yj‖ = ‖y0‖+

∞∑
j=1

1

2j−1
,

which converges. (?)

14
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Now

xnk
= xn1

+

k−1∑
j=1

(xnj+1
− xnj

)

= y0 +

k−1∑
j=1

yj

k→∞−−−−→ y0 +

∞∑
j=1

yj (by assumption and (?))

In other words, (xnk
)∞k=1 converges, hence (xn)∞n=1 converges as well.

Application: a continuous nowhere differentiable function on R.

Facts: Cb(R) is complete; M -test.
Construction: Let ϕ : R→ [0, 1]

ϕ(t) =

{
t− 2k 2k ≤ t < 2k + 1

2k + 2− t 2k + 1 ≤ t < 2k + 2

Picture: sawtooth function with zeros at . . . ,−4,−2, 0, 2, 4, . . . .
Then

(i) ϕ is continuous and bounded

(ii) ϕ is 2-periodic, ie. ϕ(t+ 2) = ϕ(t) for t ∈ R

(iii) ϕ(2k) = 0, ϕ(2k + 1) = 1 for k ∈ Z

(iv) if k ≤ s, t ≤ k + 1 (k ∈ Z), then
|ϕ(s)− ϕ(t)| − |s− t|

Let for t ∈ R

f(t) =

∞∑
k=1

( 3
4 )k ϕ(4kt)︸ ︷︷ ︸

∈[0,1]

However, note that each ϕ(4k) ∈ Cb(R),
∥∥ϕ(4k)

∥∥
∞ = 1, so by the M -test, f ∈ Cb(R). Fix t ∈ R. We show that f cannot be

differentiable at t. Let `m = b4mtc (m ∈ N) so

`m ≤ 4mt < `m + 1

=⇒ pm = `m
4m ≤ t < `m+1

4m = qm

15
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We compute

|f(pm)− f(qm)|

= | lim
n→∞

∞∑
k=1

( 3
4 )k[ϕ(4kpm)− ϕ(4kqm)]

= | lim
n→∞

∞∑
k=1

( 3
4 )k[ϕ(4k−m`m)− ϕ(4k−m(`m + 1))]

= | lim
n→∞

∞∑
k=1

( 3
4 )k[ϕ(4k−m`m)− ϕ(4k−m(`m + 1))], by (ii) (2-periodicity)

(key step) ≥ 3
4

m
1−

m−1∑
k=1

3k

4k |ϕ(4k−m`m)− ϕ(4k−m(`m + 1))︸ ︷︷ ︸
=4k−m, by (iv)

|

= 3k

4k − 1
4m

m−1∑
k=1

3k

= 1
4m [3m −

m−1∑
k=1

3k]

= 1
4m [ 2·3m−3m+1

2 ]

= 1
4m ( 3m+1

2 )

Since |pm − qm| = 1
4m , we have

f(pm)− f(qm)

pm − qm
≥ 3m + 1

2
.(

pm =
b4mtc

4m

)
If t = `

4m0
(` ∈ Z), then t = pm for m ≥ m0 and hence for m ≥ m0,∣∣∣∣f(t)− f(qm)

t− qm

∣∣∣∣ ≥ 3m + 1

2

while limm→∞ qm = t, so f ′(t) does not exist.

f(pm)− f(qm)

pm − qm
≤ |f(pm)− f(t)|+ |f(t)− f(qm)|

|pm − qm|

≤ |f(pm)− f(t)|
|pm − t|

+
|f(t)− f(qm)|
|t− qm|

Hence, for some rm ∈ {pm, qm}, |f(t)−f(rm)|
|t−rm| ≥ 3m+1

2·2 .

We have | f(t)−f(rm)
t−rm | ≥ 3m+1

4 while rm → t.

11 2017-10-20

Corollary 11.1. (`∞, ‖·‖∞) is a Banach space.

Proof. `∞ = Cb(N) with usual | · | metric on N. If f : N → R is bounded, U ⊆ R open, then f−1(U) ∈ P(N) is open (all
subsets of N are open) =⇒ f is continuous.
If (xn)∞n=1 ∈ `∞, define f : N→ R, f(n) = xn, f ∈ Cb(N), ‖f‖∞ = ‖(xn)∞n=1‖∞.

16
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Eg. (C[0, 2], ‖·‖p), ‖f‖p = (
∫ 2

0
|f |p)

1
p , 1 ≤ p <∞.

NOT a Banach space!
Let

fn(t) =


1 0 ≤ t ≤ 1

2

n( 1
2 + 1

n − t)
1
2 < t ≤ 1

2 + 1
n

0 1
2 + 1

n < t

.

Then for m < n ∈ N,

‖fn − fm‖p = (

∫ 2

0

|fn − fm|p)
1
p

=

(∫ 1
2

0

|fn − fm|p︸ ︷︷ ︸
0

+

∫ 1
2 +

1
m

1
2

≤1︷ ︸︸ ︷
|fn − fm|︸ ︷︷ ︸
≤ 1
m

+

∫ 2

1
2 +

1
m

|fn − fm|p︸ ︷︷ ︸
0

) 1
p

≤ 1

m
1
p

.

Hence (fn)∞n=1 is Cauchy in (C[0, 2], ‖·‖p).
Consider

χ
[0,

1
2 ]

(t) =

{
1 0 ≤ t ≤ 1

2

0 1
2 < t

.

χ
[0,

1
2 ]

is bounded, piecewise continuous, so Riemann integrable.

∥∥∥∥fn − χ[0,
1
2 ]

∥∥∥∥
p

= (

∫ 2

0

|fn − χ
[0,

1
2 ]
|p)

1
p ≤ 1

n
1
p

=⇒ lim
n→∞

∥∥∥∥fn − χ[0,
1
2 ]

∥∥∥∥
p

= 0.

If g ∈ C[0, 1] s.t. limn→∞‖fn − g‖p, then
∥∥∥∥g − χ[0,

1
2 ]

∥∥∥∥
p

= 0.

Using Riemann integration theory,

g(t) =

{
1 0 ≤ t ≤ 1

2

0 1
2 < t

.

Then lim
t→ 1

2
g does not exist!

11.1 Completeness of Metric Spaces

(X, d) metric space.
Remark: |d(x, z)− d(y, z)| ≤ d(x, y).
If x = limn→∞ xn, y = limn→∞ yn in (X, d), then limn→∞ d(xn, yn) = d(x, y). (See solution to A3Q2).
Def: (X, dX), (Y, dY ) metric spaces. i : X → Y is an isometry if dY (i(x), i(y)) = dX(x, y)∀x, y ∈ X.
Notes: An isometry is injective. Consider i : X → i(X) ⊆ Y =⇒ i−1 : i(X)→ X isometry.

Theorem 11.1. (X, d) metric space.

i) Existence of completion: there exists a metric space (X, d) s.t.

a) (X, d) is complete
b) ∃ isometry i : X → X

c) i(X) = X; i.e. i(X) is dense in X

17
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ii) Uniqueness up to isometry: if (X̃, d̃) is a metric space with map ĩ : X → X̃ s.t. (X̃, d̃), ĩ satisfy (a),(b),(c), then ∃ a
surjective isometry ϕ : X̃ → X s.t. ϕ ◦ ĩ = i.

Proof. 1. Fix x0 ∈ X. For u ∈ X, let fu : X → R, fu(x) = d(x, u)− d(x, x0)
=⇒ fu is continuous and |fu(x)| ≤ d(u, x0)
=⇒ ‖fu‖∞ = supx∈X |fn(x)| ≤ d(u, x0) <∞ =⇒ fu is bounded
=⇒ fu ∈ Cb(X).
For u, v ∈ X,x ∈ X,

|fu(x)− fv(x)| = |d(x, u)− d(x, v)| ≤ d(u, v).

Thus ‖fu − fv‖∞ ≤ d(u, v). Finally,

|fu(u)− fv(u)| = |d(u, u)− d(u, x0)− d(u, v) + d(u, x0)|
= d(u, v).

Thus ‖fu − fv‖∞ ≥ d(u, v) =⇒ ‖fu − fv‖∞ = d(u, v).
Define τ : X → Cb(X), τ(u) = fu, τ isometry.
Let X = τ(X) = {fu : u ∈ X} ⊆ Cb(X).
By A3Q2(a), (X, d) is complete, where d is relativized from the metric on Cb(X).

2. Let ϕ0 = τ ◦ τ−1 : τ(X)→ τ(X). ϕ0 an isometry =⇒ uniformly continuous. Hence it admits an extension ϕ = ϕ0 : X̃ =
i(X)→ X = τ(X).
Verify ϕ is an isometry:
If x̃, ỹ ∈ X̃, let x̃ = limn→∞ τ(xn), ỹ = limn→∞ τ(yn), xn, yn ∈ X. Then

ϕ(x̃) = lim
n→∞

ϕ0(τ(xn)) = lim
n→∞

τ(xn).

Hence

d(ϕ(x̃), ϕ(ỹ)) = lim
n→∞

d(τ(xn), τ(yn))

= lim
n→∞

d(xn, yn)

= lim
n→∞

d̃(τ(xn), τ(yn)) = d̃(x̃, ỹ).

=⇒ ϕ is an isometry. ϕ ◦ τ = τ comes for free.

12 2017-10-23

Assignment discussion – the completion vs A4,Q1:

Suppose (V, ‖·‖) is a non-complete normed vector space, eg. (C[0, 2], ‖·‖p) (1 ≤ p <∞). Consider the map

τ : V → Cb(V )

τ(v) ∈ Cb(V ), τ(v)(x) = ‖x− y‖ − ‖x‖

We saw that τ is an isometry, hence we let
V = τ(V )complete ⊆ Cb(V )

Problem: τ is not linear, τ(V ) not evidently a subspace of Cb(V ).
A4, Q1 shows that an addition and a scalar multiplication may be imposed on V = τ(V ) which makes it a Banach (complete
normed vector) space. These two operations are not the same as addition and scalar multiplication in Cb(V ). (The only linear
property that τ enjoys seems to be that it takes 0 to 0.)

18
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12.1 Compactness

Let (X, d) be a metric space, and K ⊆ X. We say that K is compact if given a family of open sets {Ui}i∈I for which

K ⊆
⋃
i∈I

Ui – we say {Ui}i∈I is an “open cover”

there is a finite subfamily {Ui1 , . . . , Uin} such that

K ⊆
n⋃
k=1

Uik – we say {Ui}i∈I admits a “finite subcover” .

If X = K itself is compact, we will call (X, d) a compact metric space.

Remark: If K ⊆ X is compact, the relativized metric space (K, dK) is a compact metric space.

Proposition 12.1. Let (X, d) be a metric space and K ⊆ X. If K is compact, then it must be closed.

Proof. Let us suppose, for sake of contradiction that there is x ∈ K \K. Then for n in N,

B(x, 1
n ) ∩K 6= ∅ =⇒ B[x, 1

n ] ∩K 6= ∅. (?)

Further, ∩∞n=1B[x, 1
n ] = {x}. Let Un = X \B[x, 1

n ], which is open.
We have that

∞⋃
n=1

Un =

∞⋃
n=1

(X \B[x, 1
n ]) = X \

∞⋂
n=1

B[x, 1
n ] = X \ {x} ⊇ K.

But, for any finite m we have
m⋃
n=1

Un = X \
m⋂
n=1

B[x, 1
n ] = X \B[x, 1

m ] 6⊇ K

by (?). Hence if K \K 6= ∅, K cannot be compact. So we are done.

Proposition 12.2. Let (X, d) be a compact metric space and C ⊆ X is closed. Then C is compact.

Proof. Suppose {Ui}i∈I is an open cover of C. Then {Ui}i∈I ∪{X \C} is an open cover of X. Hence X admits finite subcover
{Ui1 , . . . , Uin} ∪ {X \ C}, hence, {Ui1 , . . . , Uin} is a finite subcover of C.

Theorem 12.1 (continuous image of compact is compact). Let (X, dX) be a compact metric space, (Y, dY ) be a metric space,
and f : X → Y be continuous. Then f(X) = {f(x) : x ∈ X} is compact.

Proof. Let {Vi}i∈I be an open cover of f(X). Then Ui = f−1(Vi) is open, and {Ui}i∈I is an open cover of X. Hence there is
a finite subcover, X ⊆︸︷︷︸

“=′′

⋃n
k=1 Uik so f(X) ⊆

⋃n
k=1 f(Uik) =

⋃n
k=1 Vik , so {Vi1 , . . . , Vin} is a finite subcover of f(X).

Corollary 12.1 (Extreme Value Theorem). If (X, d) is a compact metric space, f : X → R is continuous, then there are
xmin, xmax ∈ X for which

f(xmin) ≤ f(x) ≤ f(xmax) ∀x ∈ X.

Proof. We have f(X) ⊆ R is compact. Hence f(X) is closed. Also {(−n, n)}∞n=1 (open intervals), then f(X) ⊆ R =⋃∞
n=1(−n, n) admits a finite subcover, {(−1, 1), . . . , (−n, n)} and hence f(X) ⊆ (−n, n). Thus we have inf(f(X)), sup(f(X))

exist.
Since f(X) is closed we have

inf(f(X)), sup(f(X)) ∈ f(X)

(use meet-set of closure). Let xmin, xmax be so f(xmin) = inf(f(X)), f(xmax) = sup(f(X)).

– Assignment line –
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Theorem 12.2 (finite intersection property). Let (X, d) be a metric space. Then (X, d) is compact ⇐⇒ for any family
{Fi}i∈I of closed subsets of X for which

⋂n
k=1 Fik 6= ∅, {i1, . . . , in} finite in I, we must have

⋂
i∈I Fi 6= ∅.

Proof. (=⇒) (contrapositive) Let us suppose that {Fi}i∈I is a family of closed subsets with
⋂
i∈I Fi = ∅. Then if Ui = X \Fi,

we have that {Ui}i∈I is an open cover (De Morgan’s law) and hence admits finite subcover {Ui1 , . . . , Uin}. Again, by
DeMorgan’s law,

⋂n
k=1 Fik = ∅. Hence we are done.

(⇐=) Very similar, interchange roles of Uis and Fi = X \ Ui.

Example: Let X = B[0, 1] in `p (1 ≤ p ≤ ∞).
Let en = (0, . . . , 0, 1︸︷︷︸

n-th place

, 0, . . . ) and let Fn = {ek}k≥n (seen before on Oct 18).

Each Fn is closed. Also

∞⋂
n=1

Fn = ∅

m⋂
n=1

Fn = Fm 6= ∅

Conclusion: (B[0, 1], dp) (dp(x, y) = ‖x− y‖p) is not compact.

13 2017-10-25

Def: Let (X, d) be a metric space. Then we say it is

• bounded if there are x0 in X, and R > 0 such that X ⊆ B[x0, R] (of course “=” holds) (equivalently, for any x ∈ X,
there is Rx > 0 such that X ⊆ B[x,Rx]; or, equivalently, diam(X) <∞)

• totally bounded if, for any ε > 0, there are x1, . . . , xn ∈ X such that X ⊆
⋃n
k=1B[xk, ε]

Totally bounded =⇒ bounded. [with ε > 0, x1, . . . , xn in defn, check that
⋃n
k=1B[xk, ε] ⊆ B[x1, ε+ maxk=2,...,n d(x1, xk)]]

Example: (bounded 6=⇒ totally bounded)
In `p (1 ≤ p ≤ ∞), en = (0, . . . , 0, 1︸︷︷︸

n-th place

, 0, . . . ), Fn = {ek}k≥n ⊆ `p,

Fn int, Fn ⊆ B[0, 1] ⊆ B[e, 2] so Fn is bounded. But n 6= m, d(en, em) =

{
2

1
p 1 ≤ p <∞

1 otherwise
=: R.

If 0 < ε < 1
2R, we see that Fn 6⊆

⋃n
k=1B[ek, ε] for any n.

Theorem 13.1 (Characterizations of compact metric spaces). Let (X, d) be a metric space. TFAE:

(i) (X, d) is compact,

(ii) any sequence (xn)∞n=1 ⊆ X admits a subsequence which converges in X

(iii) (X, d) is complete and totally bounded

Proof. (i) =⇒ (ii): Let Fn = {xk}∞k=n. Then each Fn is closed, and F1 ⊇ F2 ⊇ · · · , so if n1 < n2 < · · ·nm, then⋂m
j=1 Fn = Fnm

6= ∅. Thus, by finite intersection property, we have that
⋂∞
n=1 Fn 6= ∅. Let x ∈

⋂∞
n=1 Fn.

Now let
n1 = min{k : xk ∈ B(x, 1)} (exists by meet-set closure definition)

and, inductively,
nm+1 = min{k : k > nm and xk ∈ B(x, 1

m+1 )}.

Then, as is easy to check, limm→∞ xnm = x.
(ii) =⇒ (iii): If (xn)∞n=1 ⊆ X is Cauchy, it admits a converging subsequence (by assumption), and hence itself converges

20
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(earlier proposition). Thus (X, d) is complete.
Let us suppose that (X, d) is not totally bounded.
Thus, there exists ε > 0 so no finite collection of closed ε-balls covers X. Let

x1 ∈ X \B[x1, ε], . . . , xn+1 ∈ X \
n⋃
k=1

B[xk, ε] (always possible by assumption).

Thus d(xn, xm) > ε for n 6= m. Thus, this sequence (xn)∞n=1 admits no Cauchy subsequences, hence no subsequences which
converge, violating assumption (ii). Thus (ii) =⇒ (X, d) is totally bounded.
(iii) =⇒ (ii): We first use total boundedness. Given n in N, there exist yn1, . . . , ynmn

∈ X such that the closed balls

Bn1 = B[yn1,
1
n ], . . . , Bnmn

= B[ynmn
, 1
n ]

satisfy that X ⊆
⋃mn

k=1Bnk. Let

• B1 be a ball from B11, . . . , B1m1
such that

|{n ∈ N : xn ∈ B1}| = ℵ0 (pigeonhole principle)

•
...

• Bk be a ball from Bk1, . . . , Bkm1
such that

|{n ∈ N : xn ∈
k⋂
j=1

Bj}| = ℵ0

(we’ve covered X by 1-balls, B1 by
1

2
-balls, then B2 ∩B1 covered by

1

3
-balls, . . . )

Now we use completeness. Let Fn =
⋂n
k=1Bk so each Fn is closed.

• F1 ⊇ F2 ⊇ F3 ⊇ · · ·

• diam(Fn) ≤ diam(Bn) = 2
n

n→∞−−−−→ 0

Thus, by nested sets theorem,
⋂∞
n=1 Fn 6= ∅.

Let n1 = min{k ∈ N : xk ∈ F1}, inductively, nm+1 = min{k ∈ N : k > nm and xk ∈ Fk}.
Then, if x ∈

⋂∞
n=1 Fn, d(x, xm) ≤ diam(Fm) ≤ diam(Bm) = 2

m

n→∞−−−−→ 0 so x = limn→∞ xnm .

14 2017-10-27

Office hours:
Mon 2:30 – 4:30
Tue 2 – 3:30

Proof. Continuing theorem from last time:
So far we did (i) =⇒︸︷︷︸

F.I.P

(ii) =⇒︸︷︷︸
routine

(iii) =⇒︸︷︷︸
harder, nested sets thm

(ii)

(ii) =⇒ (i): Let {Ui}i∈I be an open cover of X.
(LN) There exists r > 0 s.t. for any x in X there exists i in I so B(x, r) ⊆ Ui.
(This number r is sometimes called the “Lebesgue number” of the covering; its existence is based on (ii).)

Suppose (LN) fails. Then for choice of r = 1
n , there exists xn in X s.t. B(xn,

1
n ) 6⊆ Ui for all i in I.

Our assumption is that (xn)∞n=1 ⊆ X admits a subsequence (xnk
)∞k=1 such that x0 = limk→∞ xnk

exists.

21



Fall 2017 Real Analysis Course Notes 15 2017-10-30

Then x0 ∈ Ui0 for some i0, so there is ε > 0 such that B(x0, ε) ⊆ Ui0 . Now, there is kε in N so k ≥ kε =⇒ xnk
∈ B(x0,

ε
2 ).

Hence, let us choose k ≥ kε and 1
nk

< ε
2 . Thus, if x ∈ B(xnk

, 1
nk

), we have

d(x, x0) ≤ d(x, xnk
) + d(xnk

, x0) <
1

nk
+
ε

2
< ε

and hence B(xnk
, 1
nk

) ⊆ B(x0, ε) ⊆ Ui0 , contradicting the choice of the elements xn.
Hence, we must conclude that (LN) holds.
We saw in (ii) =⇒ (iii) above, that our assumption gives total boundedness of (X, d). Hence there are y1, . . . , ym such that
X ⊆

⋃m
j=1B[yj ,

r
2 ] ⊆

⋃m
j=1B(yj , r). Now, for each j = 1, . . . ,m, (LN) tells us that there is ij ∈ I so B(yj , r) ⊆ Uij .

Thus X ⊆
⋃m
j=1B(yj , r) ⊆

⋃m
j=1 Uij , so {Ui1 , . . . , Uim} is a finite subcover.

Remark: On Rn, norms ‖·‖p (1 ≤ p ≤ ∞) are equivalent, and from A2, each gives the same open sets, and hence the same
compact sets.

Corollary 14.1.

(i) (Bolzano-Weierstrauss Theorem for Rn)
If (x(n))∞n=1 ⊆ [−R,R]n = B∞[0, R], then it admits a converging subsequence.

(ii) (Heine-Borel Theorem)
A subset K ⊆ Rn is compact ⇐⇒ K is closed & K is bounded (with respect to any ‖·‖∞).

Proof. (i) We consider, first (x
(n)
1 )∞n=1 ⊆ [−R,R] ⊆ R. By Bolzano-Weierstrauss for R, this admits converging subsequence

(x
(nk)
1 )∞n=1. Then (x

(n)
2 )∞n=1 ⊆ [−R,R] ⊆ R admits a converging subsequence (x

(nk)
2 )∞n=1. Etc. Hence, after finitely many

(n) iterations, we get a subsequence of (x(n))∞n=1 which converges (Rn, ‖·‖∞).

(ii) If K is compact, then K is closed by a result at the beginning of the section, and totally bounded by last theorem,
hence bounded. Conversely, if K is closed and bounded, K ⊆ [−R,R]n for some R > 0. Let us consider a sequence
(x(n))∞n=1 ⊆ K. First, (x(n))∞n=1 admits a converging subsequence, by (i). Since K is closed, the limit of the subsequence
is in K.

Example: P =
∏∞
k=1{0,

1
2k } ⊆ `1 is compact in (`1, ‖·‖1).

First soln: The Cantor set C is closed and bounded in R, so thus compact. And there is a continuous function f : C → `1
with f(C) = P (A4,Q3), so P is compact. [In fact f is a bijection from C to P so f−1 : P → C is also continuous.]
Second soln: P is closed (A3). Hence the relativised metric space (P, dP ) is complete. Let us show total boundedness.
Let ε > 0, and n be so 1

2n < ε. For (b1, . . . , bm) ∈ {0, 1}n, let xb1...bm =
∑∞
k=1

bk
2k ek ∈ P . If b = (b1, b2, . . . ) ∈ {0, 1}N, then

xb =
∑∞
k=1

bk
2k ek ∈ P (generic element of P ).

Then for b = (b1, b2, . . . ) as above,

‖xb − xb1...bn‖1 =

∞∑
k=n+1

1

2k
bk ≤

∞∑
k=n+1

1

2k
=

1

2n
≤ ε.

Thus, P ⊆
⋃

(b1,...,bn)∈{0,1}n B[xb1...bn , ε].

– MIDTERM CUTOFF –

15 2017-10-30

Midterm: Wed evening
See info sheet on website
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Office hours:
– 2:30 - 4:30
– 1:30 - 3:30

A5 - will be posted Friday

Theorem 15.1 (sequential characterization of uniform continuity). Let (X, dX) and (Y, dY ) be metric spaces, f : X → Y .
Then

f is uniformly continuous ⇐⇒ whenever dX(xn, yn)
n→∞−−−−→ 0, xn, yn ∈ X,

we must have dY (f(xn), f(yn))
n→∞−−−−→ 0.

Proof. (=⇒) Given ε > 0, there is δ > 0 such that dX(x, y) < δ (x, y in X) =⇒ dY (f(x), f(y)) < ε. Now suppose
(xn)∞n=1, (yn)∞n=1 ⊆ X such that limn→∞ dX(xn, yn) = 0. Then there is nε in N such that

n ≥ nε =⇒ dX(xn, yn) < δ

=⇒ dY (f(xn), f(yn)) < ε.

I.e. limn→∞ dY (f(xn), f(yn)) = 0.
(⇐=) (contrapositive) Suppose f is not uniformly continuous, so there exists ε > 0 such that for all δ > 0 there are x, y
in X with dX(x, y) < δ but dY (f(x), f(y)) ≥ ε. For each choice δ = 1

n , let xn, yn in X so dX(xn, yn) < 1
n for which

dY (f(xn), f(yn)) ≥ ε.
Plainly, limn→∞ dX(xn, yn) = 0 while limn→∞ dY (f(xn), f(yn)) 6= 0 (if the limit exists).

Ex: Let f(x) = x2 on R. Let xn = n, yn = n+ 1
n . Then |xn − yn| =

1
n

n→∞−−−−→ 0, while |f(xn)− f(yn)| = 2 + 1
n2 6

n→∞−−−−→ 0.
Hence f is not uniformly continuous.

Theorem 15.2 (continuous on compact is uniformly continuous). Let (X, dX), (Y, dY ) be metric spaces, with (X, dX)
compact, and f : X → Y continuous. Then f is uniformly continuous.

Proof. Let us suppose not. Then there is ε > 0 and (xn)∞n=1, (yn)∞n=1 ⊆ X such that dX(xn, yn)
n→∞−−−−→ 0 while dY (f(xn), f(yn)) ≥

ε. Let (xnk
)∞k=1 be a converging subsequence. Then let (ynk

)∞k=1 be a sequence in X, hence admits converging subsequence
(ynk`

)∞`=1. Then if x = limk→∞ xnk
= lim`→∞ xnk`

then

dX(x, ynk`
) ≤ dX(x, xnk`

) + dX(xnk`
, ynk`

)

`→∞−−−→ 0

so x = lim`→∞ ynk`
. Then we have f(x) = lim`→∞ f(ynk`

), by continuity, so

0 = dY (f(x), f(x)) = lim
`→∞

dY (f(xnk`
), f(ynk`

))

contradicts (?). Thus, we conclude that f is uniformly continuous.

Definition: A map f : X → Y ((X, dX), (Y, dY )) is called Lipschitz if there is L ≥ 0 such that

dY (f(x), f(y)) ≤ LdX(x, y) for all x, y ∈ X.

Notice that

sup
x,y∈X, x 6=y

dY (f(x), f(y))

dX(x, y)
= inf{L ≥ 0 : (Lip) is satisfied }

so there exists a minimum L satisfying (Lip). We call this the “Lipschitz constant”.
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Remark: Lipschitz exercise
====⇒ uniform continuity =⇒ continuity

Lipschitz 6 assignment⇐====== uniform continuity 6⇐= continuity

Theorem 15.3. Any two norms on Rn are equivalent, i.e. if ‖·‖, ||| · ||| on Rn satisfy ‖·‖ ≈ ||| · |||, i.e., there are m,M > 0 for
which m‖x‖ ≤ |||x||| ≤M‖x‖.

Proof. Let ‖·‖ be a norm on Rn. We will see that ‖·‖ ≈ ‖·‖1 (‖x‖1 =
∑n
j=1 |xj |). Since ≈ is an equivalence relation, we get

‖·‖ ≈ ‖·‖1 so ‖·‖ ≈ ‖·‖.
Let {e1, . . . , en} be the standard basis, so if x ∈ Rn, x =

∑n
j=1 xjej . Then

‖x‖ =

∥∥∥∥∥∥
n∑
j=1

xjej

∥∥∥∥∥∥ ≤︸︷︷︸
properties of norm

n∑
j=1

|xj |‖ej‖ ≤M‖x‖1 where M = max
j=1,...,n

‖ej‖.

Notice, then, for x, y in Rn we have

|‖x‖ − ‖y‖| ≤︸︷︷︸
standard ≤ (shown before completeness of Cb(X))

‖x− y‖ ≤M‖x− y‖1

so ‖·‖ : Rn → R is Lipschitz with respect to d1(x, y) = ‖x− y‖1 and thus continuous.
Let S1 = {x ∈ Rn : ‖x‖1 = 1} = B1[0, 1] \B1(0, 1)︸ ︷︷ ︸

⊆B1[0,1]

so S1 is closed in B1[0, 1]. Hence by Heine-Borel Theorem, it is compact.

Hence, by Extreme Value Theorem, there is xmin in S1 such that

‖xmin‖ = inf{‖x‖ : x ∈ S1}.

Let m = ‖xmin‖ > 0 (as xmin 6= 0, since ‖xmin‖1 = 1 6= 0).
Now, if x ∈ Rn \ {0}, then

m ≤

∥∥∥∥∥∥∥∥∥
1

‖x‖1
x︸ ︷︷ ︸

∈S1

∥∥∥∥∥∥∥∥∥ =⇒ m‖x‖1 ≤ ‖x‖ (‡)

Then (†) and (‡) show that ‖·‖ ≈ ‖·‖1.

Corollary 15.1. If ‖·‖ is a norm on Rn, ||| · ||| on Rm and A : Rn → Rm is linear. Then A is Lipschitz from (Rn, ‖·‖) to
(Rm, ||| · |||), and hence continuous.

Proof. Let {e1, . . . , en} be the standard basis of Rn, {e1, . . . , em} be the standard basis of Rm. Then there is a matrix [aij ]
such that Aej =

∑n
i=1 aijei.

Then for x =
∑n
j=1 xjej in Rm we have

Ax =

n∑
j=1

xjAej

=

n∑
j=1

xj

n∑
i=1

aijej

=

m∑
i=1

 n∑
j=1

aijxi

 ei ∈ Rm
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so

|||Ax||| ≤
n∑
j=1

|
n∑
j=1

aijxj ||||ei|||, M = max
j=1,...,n

|||ei|||

≤M
n∑
j=1

m∑
i=1

|aij ||xj |, ‖A‖∞ = max
i=1,...,m, j=1,...,n

|aij |

= M

m∑
i=1

n∑
j=1

|aij ||xj |

≤M
m∑
i=1

|A|∞|x|1

= M‖x‖1 ≤M

‖x‖1 ≤M‖x‖

16 2017-11-01

Proposition 16.1. Let (V, ‖·‖V ), (W, ‖·‖W ) be normed linear spaces, A : V →W be linear. Then TFAE:

1. A is continuous

2. |||A||| := sup{‖Ax‖W : x ∈ BV [0, 1]︸ ︷︷ ︸
closed ball, center 0 in V

} <∞

3. A is Lipschitz map with Lipschitz constant |||A|||

Moreover, in the case of (ii) (hence (iii)), above, ‖Ax‖W ≤ |||A|||‖x‖V for any x in V .

Proof. (i) =⇒ (ii) A is continuous at 0 in V . Thus, letting ε = 1, there is δ > 0 s.t. A(BV (0, δ)) ⊆ BW (0, 1).
Now, if x ∈ BV [0, 1], then δ

2x ∈ BV (0, δ), so

‖Ax‖W =
2

δ

∥∥∥∥∥∥∥A( δ2x)︸ ︷︷ ︸
∈B(0,1)

∥∥∥∥∥∥∥
W

<
2

δ
1 =

2

δ
<∞

so |||A||| = supx∈BV [0,1]‖Ax‖W ≤
2
δ <∞.

(ii) =⇒ (iii) If x ∈ V \ {0}, so 1
‖x‖V

x ∈ BV [0, 1] and

(?) ‖Ax‖W = ‖x‖V

∥∥∥∥A( 1

‖x‖V
x

)∥∥∥∥
W︸ ︷︷ ︸

≤|||A|||

≤ |||A|||‖x‖V .

Clearly, (?) holds for x = 0 in V . Hence if x, y ∈ V ,

‖Ax−Ay‖W = ‖A(x− y)‖W ≤ |||A|||‖x− y‖V .

Thus A is Lipschitz and “Moreover...” holds. Furthermore, by (?),

|||A||| = sup
x∈V \{0}

‖Ax‖W
‖x‖V

= sup
x 6=y in V

‖Ax−Ay‖W
‖x− y‖V

which is the definition of the Lipschitz constant.
(iii) =⇒ (i) Obvious.
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Remark: Let B(V,W ) = {A : V → W | A is linear and continuous}. Notice that (ii) above shows that A must be bounded
on BV [0, 1] and we call A a “bounded linear operator”.
B(V,W ) is a R-vector space (pointwise addition and scalar multiplication) and ||| · ||| is a norm on B(V,W ), called “bounded
operator norm”. (Exercise.)

Question: Is continuity automatic for linear operators?
Example: Consider the vector space C[0, 1] of continuous R-valued functions on [0, 1]. Let

ϕ : C[0, 1]→ R, ϕ(f) = f( 1
2 ) (evaluation at 1

2 ).

Then ϕ is linear: let f, g ∈ C[0, 1], α ∈ R, then

ϕ(f + αg) = f( 1
2 ) + αg( 1

2 )

= ϕ(f) + αϕ(g)

(i) Consider (C[0, 1], ‖·‖∞). Then
|ϕ(f)| = |f( 1

2 )| ≤ max
t∈[0,1]

|f(t)| = ‖f‖∞.

Thus |||ϕ||| ≤ 1 (easy to show that |||ϕ||| = 1), i.e., ϕ ∈ B((C[0, 1], ‖·‖∞),R).

(ii) Now consider (C[0, 1], ‖·‖p) (1 ≤ p <∞). Let

fn(t) =


0 if t ≤ 1

2 −
1
n2p

n2p+1(t− 1
2 + 1

n2p ) if 1
2 −

1
n2p < t ≤ 1

2

n2p+1( 1
2 + 1

n2p − t) if 1
2 < t ≤ 1

2 + 1
n2p

0 t > 1
2 + 1

n2p

[triangular spike at [ 1
2 −

1
n2p ,

1
2 + 1

n2p with peak at 1
2 having value n.] Notice

ϕ(fn) = fn( 1
2 ) = n

while

‖fn‖p =

(∫ 1

0

fpn

) 1
p

=

∫ 1
2 + 1

n2p

1
2−

1
n2p

fpn︸︷︷︸
0≤fp

n≤np


1
p

≤

(∫ 1
2 + 1

n2p

1
2−

1
n2p

np︸︷︷︸
constant

) 1
p

=

(
np

2

n2p

) 1
p

=
2

1
p

n
.

Thus
|ϕ(fn)|
‖fn‖p

=
n

2
1
p

n

=
n2

2
1
p

n→∞−−−−→∞.

Hence
ϕ /∈ B((C[0, 1], ‖·‖p), R).

Example: (Axiom of choice) If (V, ‖·‖) is an infinite dimensional normed vector space, then it admits an infinite linearly
independent family {vn}∞n=1. There exists a basis {wi}i∈I s.t. {vn}∞n=1 ⊆ {wi}i∈I .
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Define f : V → R

f(wi) =

{
n
‖vn‖ if wi = vn

0 otherwise

and extend uniquely to a linear operator on V .
Check that f /∈ B(V,R).
Why isn’t B[0, 1] in (C[0, 1], ‖·‖∞) compact?
Reason: existence of subsequence with no converging subsequence [similar holds on (`p, ‖·‖p)].

Picture: [triangle spike to height fn(t) = 1 on [ 1
n+1 ,

1
n ], 0 elsewhere.]

Calculate that if m 6= n, ‖fn − fm‖∞ = 1. Conclude that (fn)∞n=1 ⊂ B[0, 1] admits no converging subsequence.

17 2017-11-03

Theorem 17.1 (Banach’s Contraction Mapping Theorem). Let (X, d) be a complete metric space and let Γ : X → X be a
strict contraction, i.e., there is 0 < c < 1 s.t. d(Γ(x),Γ(y)) < cd(x, y) for x, y in X (Γ is c-Lipschitz). Then

(i) there is a unique fixed point xfix for Γ, i.e. Γ(xfix) = xfix,

(ii) given any x0 in X, if we define a sequence by xn = Γ(xn−1), n ∈ N, then it satisfies

d(xn, xfix) ≤ cn

1− c
d(x0,Γ(x0))

and hence limn→∞ xn = xfix.

Proof. Let x0 ∈ X. We define (xn)∞n=1 ⊆ X as in (ii), above. We note that d(x1, x2) = d(Γ(x0),Γ(x1)) ≤ cd(x0, x1) =
cd(x0,Γ(x0)).
Now, if

(?) d(xn, xn+1) ≤ cnd(x0,Γ(x0)),

then
d(xn+1, xn+2) = d(Γ(xn),Γ(xn+1)) ≤ cd(xn, xn+1) ≤ cn+1d(x0,Γ(x0))

so (?) holds generally. Thus, if m < n in N we have

d(xm, xn) ≤
n−1∑
j=m

d(xj , xj+1)

≤
n−1∑
j=m

cjd(x0,Γ(x0)), by (?)

≤
∞∑
j=m

cjd(x0,Γ(x0)), by (?) =
cm

1− c
d(x0,Γ(x0)).

It follows that (xn)∞n=1 is Cauchy, and hence xfix = limn→∞ xn exists. Then

xfix = lim
n→∞

xn = lim
n→∞

Γ(xn) =︸︷︷︸
Γ Lipschitz =⇒ continuous

Γ( lim
n→∞

xn) = Γ(xfix).

Hence xfix is a fixed point. If yfix is any other fixed point then

d(xfix, yfix) = d(Γ(xfix),Γ(yfix))

≤ cd(xfix, yfix)

< d(xfix, yfix), if d(xfix, yfix) > 0
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so we must have d(xfix, yfix) = 0, i.e. xfix = yfix. Thus (i) holds.
Also we have for m,n, as above,

d(xm, xn) ≤ cm

1− c
d(x0,Γ(x0)) =⇒ d(xn, xfix) = lim

n→∞
d(xm, xn) ≤ cm

1− c
d(x0,Γ(x0))

so (ii) holds.

Application: Some differentiable equations

Let F : [a, b]× R→ R be continuous, and y0 ∈ R. We consider the following initial value problem:
Want f ∈ C[a, b], with f(a) = y0︸ ︷︷ ︸

initial value

and f ′(t) = F (t, f(t))︸ ︷︷ ︸
differential equation

(IVP).

We use the Fundamental Theorem of Calculus to convert this to an integral equation:
Want f ∈ C[a, b], f(t) = y0 +

∫ t
a
F (s, (f(s)))ds (IE).

Theorem 17.2 (Picard-Lindelof Theorem). Let F, y0 be as above and suppose that F is Lipschitz in the second variable: for
all t ∈ [a, b], y, z ∈ R,

|F (t, y)− F (t, z)| ≤ L|y − z|, for some L > 0.

Then (IVP) admits a unique solution, fsol in C[a, b].

Proof. (I) Let us assume that (b− a)L < 1. Define Γ : C[a, b]→ C[a, b] by, for t ∈ [a, b],

Γ(f)(t) = y0 +

∫ t

a

F (s, f(s))ds.

Then for f, g ∈ C[a, b], and t ∈ [a, b], then

|Γ(f)(t)− Γ(g)(t)| = |
∫ t

a

[F (s, f(s))− F (s, g(s))]ds|

≤
∫ t

a

|F (s, f(s))− F (s, g(s))|︸ ︷︷ ︸
≤L|f(s)−g(s)|

ds

≤ L
∫ t

a

|f(s)− g(s)|︸ ︷︷ ︸
≤‖f−g‖∞

ds

≤ L‖f − g‖∞
∫ t

a

1ds

= L‖f − g‖∞(t− a) ≤ (b− a)L‖f − g‖∞.

In summary,

‖Γ(f)− Γ(g)‖∞ = sup
t∈[a,b]

‖Γ(f)(t)− Γ(g)(t)‖

≤ (b− a)L︸ ︷︷ ︸
<1

‖f − g‖∞.

Hence, by the Contraction Mapping Theorem, applied to Γ on (C[a, b], ‖·‖∞), there is a unique fsol such that Γ(fsol) = fsol.
(II) Let

a = a1 < a2 < b1 < b3 < b2 < · · · < an < bn−1 < bn = b

so that (bj − aj)L < 1 for j = 1, . . . , n.
Notice that [aj , bj ] ∩ [aj+1, bj+1] = [aj , bj+1] has non-empty interior.
Let f1 ∈ C[a1, b1] be the unique solution to (IVP) with f1(a) = y0, by (I).
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Then, let f2 in C[a2, b2] satisfy (IVP) with f2(a2) = f1(a2). Then, let f3 in C[a3, b3] satisfy (IVP) with f3(a3) = f2(a3). Etc.
Let f : [a, b]→ R be given by

f(t) = fj(t) for t ∈ [aj , bj ], j = 1, . . . , n.

Check that this is well-defined. Its value is uniquely determined on each [aj+1, bj ], thanks to uniqueness in (I).

18 2017-11-06

Example: (IVP) Want f ∈ C[0, 1] s.t.
f(0) = 1, f ′(t) = tf(t).

We convert to

(IE) f(t) = 1 +

∫ t

0

sf(s)ds.

This fits into Picard-Lindelof Theorem. Let F (t, y) = ty, so f(t) = 1 +
∫ t

0
F (s, f(s))ds with |F (t, y)− F (t, z)| = |t|︸︷︷︸

≤1

|y − z| ≤

|y − z|. (Case (II) of Picard-Lindelof.)
However, let Γ : C[0, 1]→ C[0, 1] by, for t ∈ [0, 1],

Γ(f)(t) = 1 +

∫ t

0

sf(s)ds.

Let us see that Γ, itself, is a strict contraction. Let f, g ∈ C[0, 1], t ∈ [0, 1],

|Γ(f)(t)− Γ(g)(t)| ≤
∫ t

0

s |f(s)− g(s)|︸ ︷︷ ︸
≤‖f−g‖∞

ds

≤
∫ t

0

sds‖f − g‖∞

=
t2

2︸︷︷︸
≤ 1

2

‖f − g‖∞

≤ 1

2
‖f − g‖∞.

(‖Γ(f)− Γ(g)‖∞ ≤
1

2
‖f − g‖∞)

Hence, contraction mapping theorem tells us that Γ has a unique fixed point, ie (IE) and (IVP) have a unique solution, fsol.
Furthermore, if we choose f0 ∈ C[0, 1] and let fn = Γ(fn−1) (n ∈ N) then

‖fsol − fn‖∞ ≤
( 1

2 )n

1− 1
2︸ ︷︷ ︸

= 1

2n−1

‖f0 − Γ(f0)‖∞.

We can compute fsol.
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Let f0(t) = 0 (constant zero).

f1(t) = Γ(f0)(t) = 1 +

∫ t

0

s0ds = 1

f2(t) = Γ(f1)(t) = 1 +

∫ t

0

s1ds = 1 +
t2

2

f3(t) = Γ(f2)(t) = 1 +

∫ t

0

s(1 +
t2

2
)ds = 1 +

t2

2
+

t4

4 · 2

(Use induction to check)

fn(t) = 1 +
t2

2
+

t4

4 · 2
+ · · ·+ t2(n−1)

[2(n− 1)][2(n− 2)] · · · 2
=

n∑
k=1

t2(k−1)

2k−1(k − 1)!
.

Thus, at any t in [0, 1],

fsol = lim
n→∞

n∑
k=1

t2(k−1)

2k−1(k − 1)!
=

∞∑
k=1

t2(k−1)

2k−1(k − 1)!
.

Furthermore, for each n,

‖fsol − fn‖∞ = max
t∈[0,1)

|fsol(t)− fn(t)|

≤ 1

2n−1

∥∥∥∥∥∥0− Γ(0)︸︷︷︸
=1

∥∥∥∥∥∥
∞

=
1

2n−1
.

Question: Suppose we only knew that
d(Γ(x),Γ(y)) < d(x, y) for x 6= y in X.

(“proper contraction” instead of “strict contraction”)
Does Γ necessarily admit a fixed point?

Answer #1: No.
Example: On X = [1,∞) ⊂ R, let Γ(x) = x+ 1

x . If x < y, we have there is x < cx,y < y such that

|Γ(x)− Γ(y)| = |Γ′(cx,y)||x− y| = |1− 1

c2x,y
||x− y| < |x− y|.

Notice: if Γ(x) = x we’d have x = x+ 1
x =⇒ 0 = 1

x . Hence Γ admits no fixed point in [1,∞).

Answer #2: Yes, provided we limit (X, d).

Theorem 18.1 (Edelstein). Let (X, d) be compact, and Γ : X → X satisfy d(Γ(x),Γ(y)) < d(x, y) for x 6= y in X. Then

(i) Γ admits a unique fixed point xfix, and

(ii) if x0 ∈ X, and xn = Γ(xn−1) (n ∈ N), then xfix = limn→∞ xn.

Proof. (i) Let f : X → R, f(x) = d(x,Γ(x)). Since Γ is continuous, f is continuous. [Check that f is 2-Lipschitz.]
Hence, by EVT, there is xmin in X so f(xmin) = min f(X). Suppose xmin 6= Γ(xmin), then

f(Γ(xmin)) = d(Γ(xmin),Γ ◦ Γ(xmin))

< d(xmin,Γ(xmin)) = f(xmin)
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violating choice of xmin. Hence xmin = Γ(xmin), so write xmin = xfix.
If, also, y = Γ(y) in X, with y 6= xfix, then

d(y, xfix) = d(Γ(y),Γ(xfix)) < d(y, xfix)

which is absurd.

(ii) Let x0 ∈ X, (xn)∞n=1 be as above. Notice that

0 ≤ d(xfix, xn+1) = d(Γ(xfix),Γ(x0)) < d(xfix, x0)

so L = limn→∞ d(xfix, xn) exists (decreasing, bounded sequence in R).
Consider any converging subsequence (xnk

)∞k=1 of (xn)∞n=1, with x = limk→∞ xnk
. Then d(xfix, x) = limk→∞ d(xfix, xnk

) =
L.
If x 6= xfix, then

L = lim
k→∞

d(xfix, xnk+1) = lim
k→∞

d(xfix,Γ(xnk
))

= d(xfix,Γ(x)) < d(xfix, x) = L

which is absurd. Hence the sequence (xn)∞n=1 has that xfix is the only possible limit of a subsequence. Thus limn→∞ xn = xfix
(check!).

19 2017-11-08

Office hours:
Today 2:30-3:30
Tomorrow 2:30-4
Friday 2:30-3:30

19.1 Baire Category Theorem

Definition: Let (X, d) be a metric space.

(i) A subset N ⊂ X is called nowhere dense if (N)◦ = ∅ (ie. the interior of the closure of N is the empty set). [Equivalently,
for any x ∈ N, ε > 0, B(x, ε) \N 6= ∅].

(ii) A set S ⊆ X will be called meager (or is 1st category) if S is a countable union of nowhere dense sets: i.e.

S =

∞⋃
n=1

Nn, each (Nn)◦ = ∅.

(ii’) S ⊆ X is non-meager (or is 2nd category) provided that it is not meager.

(iii) A set R ⊆ X is residual if X \R is meager.
Remarks:

nowhere dense =⇒ meager
residual =⇒ non-meager (provided (X, d) is complete;

consequence of B.C.T, Baire Category Theorem)

If (X, d) is complete, we think of meager = “small”, non-meager = “not small” ⇐= residual.

Examples:

(i) If x0 ∈ X, {x0} is nowhere dense ⇐⇒ x0 is an accumulation point.
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(ii) In (R2, ‖·‖2), R× {0} is meager (exercise).

(iii) In (R, | · |), the Cantor set C is nowhere dense.
Indeed, C is closed. If t = 0.t1t2 · · · ∈ C (ternary representation), then given ε > 0, find k so 1

3k < ε and then

t′ = 0.t1t2 . . . tk−11tk+1 · · · ∈ B(t, ε) \ C.

(iv) Q =
⋃
q∈Q{q} is meager in (R, | · |) (using (i)).

(v) Q =
⋃
q∈Q{q} is meager in (Q, | · |) (using (i)).

Note: if (X, d) is not complete, it may be meager in itself. [meager sets are interesting in complete settings.]

Remark: If (X, d) is a metric space, U ⊆ X is open and x0 ∈ U , then there is ε > 0, s.t. B[x, ε] ⊆ U (Indeed, let ε′ > 0 be so
B(x, ε′) ⊆ U , and ε ∈ (0, ε′)).

Lemma 19.1. Let (X, d) be a metric space, N ⊂ X. Then N is nowhere dense ⇐⇒ X \N = X.

Proof.

N is nowhere dense ⇐⇒ for any x ∈ N, ε > 0, B(x, ε) \N 6= ∅

⇐⇒ x ∈ X \N for any x ∈ N ∪ (X \N).

Theorem 19.1 (Baire Category Theorem). Let (X, d) be a complete metric space.

(i) Suppose {U}∞n=1 is a sequence of open sets, each dense in X. Then
⋂∞
n=1 Un is dense in X.

(ii) If M ⊂ X is meager, then M◦ = ∅.

Proof. (i) Let x0 ∈ X and ε0 > 0. We wish to show that B(x0, ε0) ∩
⋂∞
n=1 Un 6= ∅.

Since U1 = X, there is x1 ∈ B(x0, ε0) ∩ U1 (using meet set characterization of closure). Let ε1 > 0 be chosen so
B[x1, ε1] ⊆ B(x0, ε0) ∩ U1.
Since U2 = X, there is x2 ∈ B(x1, ε1) ∩ U2.
Let ε2 ∈ (0, ε12 ] be so B[x2, ε2] ⊆ B(x1, ε1) ∩ U2.
Inductively, having chosen xn, εn, we appeal to the fact that Un+1 = X to find xn+1 ∈ B(xn, εn) ∩ Un+1, then choose
εn+1 ∈ (0, εn2 ] and B[xn+1, εn+1] ⊆ B(xn, εn) ∩ Un+1.
Thus, we have (xn)∞n=1 ⊆ X, (εn)∞n=1 ⊂ (0,∞) s.t.

(a) B[xn+1, εn+1] ⊆ B(xn, εn) ⊆ B[xn, εn]

(b) diamB[xn, εn] = 2εn ≤ εn−1 ≤ εn−2

2 ≤ · · · ≤ ε1
2n−1 .

(c) B[xn, εn] ⊆ Un ∩B(x0, ε0).

Then (a) & (b), with the Nested Sets Theorem, show that
⋂∞
n=1B[xn, εn] 6= ∅.

Further, (c) shows that ∅ 6=
⋂∞
n=1B[xn, εn] ⊆

⋂∞
n=1 Un ∩B(x0, ε0).

Hence, for any x0 ∈ X, ε0 > 0, B(x0, ε0) ∩
⋂∞
n=1 Un 6= ∅, so

⋂∞
n=1 Un = X.

(ii) Write M =
⋃∞
n=1Nn, each (Nn)◦ = ∅. Then Un = X \Nn is open, and dense in X, by Lemma.

We have

X \M = X \
∞⋃
n=1

Nn ⊇ X \
∞⋃
n=1

Nn(as each Nn ⊆ Nn)

=

∞⋂
n=1

(X \Nn) =

∞⋂
n=1

Un
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so X \M = X. Thus if x ∈M, ε > 0, we have B(x, ε) \M = B(x, ε) ∩ (X \M) 6= ∅. Thus x /∈M◦, i.e. M◦ = ∅.

Question: Let {qk}∞k=1 = Q. Let for n in N

Un =

∞⋃
k=1

(qk −
1

2kn+1
, qk +

1

2kn+1
)︸ ︷︷ ︸

length is 1

2nk︸ ︷︷ ︸
Un is a union of intervals, sum of lengths is

∑∞
k=1

1

(2n)k
=

1
2n

1−
1

2n

Is Q =
⋂∞
n=1 Un?

20 2017-11-10

Remark: In particular, a nonempty open subset in a complete metric space is nonmeager. The whole ofX is a nonempty open set.

Corollary 20.1. A residual set in a complete metric space is nonmeager.

Proof. Let R ⊂ X be residual, so M = X \R is meager, so X \R =
⋃∞
n=1Nn, each (Nn)◦ = ∅. If we had that R was meager,

i.e. R =
⋃∞
n=1N

′
n, (N ′n

◦
) = ∅, then

X = R ∪ (X \R) =

∞⋃
n=1

N ′n ∪
∞⋃
n=1

Nn︸ ︷︷ ︸
countable union of nowhere dense sets

.

But X◦ = X, so this contradicts B.C.T.

meager = “small”, residual = “bigness”, “typical elements”

Definition: Let (X, d) be a metric space.

1. G ⊆ X is a Gδ-set if G =
⋂∞
n=1 Un, each Un open

2. F ⊆ X is an Fσ-set if F =
⋃∞
n=1 Fn, each Fn closed

Examples:

1. In A4,Q2, we saw that any closed set is Gδ
(i’) Any open set U ⊆ X is Fσ (De Morgan’s law)

2. R \Q is not Fσ.
First, Q =

⋃
q∈Q{q} is Fσ. Second, if F ⊂ R \Q is closed, then F is nowhere dense (this just follows density of Q). Thus

if we had an Fσ realization R \Q =
⋃∞
n=1 Fn, Fn ⊂ R \Q closed, then R \Q is meager. Thus,

R = Q ∪ (R \Q) =
⋃
q∈Q
{q} ∪

∞⋃
n=1

Fn

would be meager which violates B.C.T. (Corollary just stated).
(ii’) Q is not Gδ (De Morgan, from (ii)).
In particular

Q 6⊆
∞⋂
n=1

∞⋃
k=1

(qk −
1

2kn+1
, qk +

1

2kn+1
)︸ ︷︷ ︸

Un

.
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{qk}∞n=1 = Q.

Corollary 20.2. In a complete metric space, a dense Gδ-subset is residual.

Proof. In complete (X, d), if G =
⋂∞
n=1 Un, each Un open, and G = X, then each Un = X. Thus, by lemma before B.C.T.,

each X \ Un is nowhere dense hence X \G = X \
⋂∞
n=1 Un =

⋃∞
n=1(X \ Un) is meager.

Theorem 20.1 (Uniform Boundedness Principle). Let (X, d) be a complete metric space and {fi}i∈I ⊂ C(X) (continuous
R-valued functions) which satisfies for each x

sup
i∈I
|fi(x)| <∞ (pointwise boundedness).

Then there exists an open ∅ 6= U ⊆ X s.t.

sup
i∈I

sup
x∈U
|fi(x)| <∞ (uniform boundedness on U).

Proof. For n in N, let
Fn = {x ∈ X : |fi(x)| ≤ n for all i ∈ I}.

By our pointwise boundedness assumption,

X =

∞⋃
n=1

Fn (?).

Each Fn is closed:

Fn =

∞⋂
i∈I
|fi|−1((−∞, n]) =

∞⋂
i∈I

(X \ |fi|−1(n,∞)︸ ︷︷ ︸
open, as |fi(·)| is continuous

)

︸ ︷︷ ︸
closed

But B.C.T. tells us that our complete X is non-meager, so for some n0, F
◦
n0
6= ∅. Let U = F ◦n0

, and for all x ∈ U ⊆ Fn

|fi(x)| ≤ n0 for all i ∈ I
=⇒ sup

x∈U
|fi(x)| ≤ n0 for all i ∈ I

=⇒ sup
i∈I

sup
x∈U
|fi(x)| ≤ n0 <∞.

Corollary 20.3 (Banach-Stenhaus Theorem). Let (V, ‖·‖V ) be a Banach space, (W, ‖·‖W ) a normed vector space, and
{Ti}i∈I ⊂ B(V,W ) satisfies

sup
i∈I
‖Tix‖W <∞ for each x ∈ V.

Then
sup
i∈I
|||Ti||| <∞. [Recall |||Ti||| = sup

x∈BV [0,1]

‖Tix‖W .]

Proof. Let fi(x) = ‖Tix‖W , for i ∈ I, x ∈ V , so {fi}i∈I ⊂ C(V ). Our assumption on {Ti}i∈I , gives pointwise boundedness of
{fi}i∈I , so U.B.P provides ∅ 6= U ⊂ V for which

M = sup
i∈I

sup
x∈U
‖Tix‖ <∞.

As U is open, if x0 ∈ U , there is ε > 0, B[x0, ε] ⊂ U .
Now if z ∈ BV [0, 1], then we may write

z =
1

2ε
(−x0 + εz) +

1

2ε
(x0 + εz)
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and, for i in I, we have

‖Tiz‖W ≤
1

2ε

∥∥∥∥∥∥∥Ti( x0 − εz︸ ︷︷ ︸
∈B[x,ε]⊂U

)

∥∥∥∥∥∥∥
W

+
1

2ε

∥∥∥∥∥∥∥Ti( x0 + εz︸ ︷︷ ︸
∈B[x,ε]⊂U

)

∥∥∥∥∥∥∥
W

≤ 1

2ε
M +

1

2ε
M =

M

ε
.

=⇒ |||Ti||| = sup
z∈BV [0,1]

‖Tiz‖W ≤
M

ε
<∞.

21 2017-11-13

21.1 Baire-1 Functions

Def: Let ∅ 6= X ⊆ R, so (X, d) is a metric space with relativized metric from R.
A function f : X → R is called Baire-1 if there is a sequence (fn)∞n=1 ⊂ C(X) such that for t ∈ X,

f(t) = lim
n→∞

fn(t) (pointwise limit).

Remark: Unlike uniform limits, pointwise limits of continuous functions need not be continuous.

Example: Let X = [0, 1], fn(t) = tn. Then

lim
n→∞

fn(t) =

{
0 t ∈ [0, 1)

1 t = 1.

Question: Let for t in [0, 1],

fn(t) = cos(n!πt)n!n!
.

If t = k
` ∈ Q, ` ∈ N, then fn(t) = 1, if t ≥ `+ 1.

Does limn→∞ fn(t) = χQ∩[0,1](t) for t in [0, 1]?
Answer: No. (Probably the limit does not exist.)
The answer will follow from (corollary to) the next theorem and B.C.T.

Theorem 21.1 (Baire). Let a < b, and f : (a, b)→ R be a Baire-1 function, then there is t0 in (a, b) such that f is continuous
at t0.

χQ(t) = lim
n→∞

lim
m→∞

|cos(n!πt)m|︸ ︷︷ ︸
χ
{
k
n! ,k∈Z}

(t)

Baire-2 = pointwise limit of Baire-1 functions.
At no t0 is χQ continuous, thus not Baire-1.

Proof. Let f(t) = limn→∞ fn(t), t ∈ (a, b), (fn)∞n=1 ⊂ C(a, b).
(I) Given ε > 0, we will show that there are α < β in (a, b), and Nε in N such that for all n,m ≥ Nε,

|fn(t)− fm(t)| ≤ ε for t ∈ [α, β].

Let us proceed by contradiction. Hence, there exists t1 in (a, b), and n1,m1 ∈ N such that

|fn1(t1)− fm1(t1)| > ε.
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Since each fn1 , fm1 is continuous, there is an open interval I1 ⊂ I1 ⊂ (a, b) such that

|fn1
(t)− fm1

(t)| > ε for t ∈ I1.

[t 7−→ |fn1
(t)− fm1

(t)| is continuous.]
Next, by assumption, there is t2 ∈ I1 such that there exist n2,m2 > max{n1,m1} such that

|fn2
(t2)− fm2

(t2)| > ε.

Again, as fn2
, fm2

are continuous, there is an open interval I2 ⊂ I2 ⊂ I1 such that

|fn2(t)− fm2(t)| > ε for t ∈ I2.

Inductively, we obtain

• a sequence of intervals
I1 ⊃ I1 ⊃ I2 ⊃ I2 ⊃ · · · ⊃ In ⊃ In ⊃ · · · , and

• two increasing sequences (nk)∞k=1, (mk)∞k=1 ⊆ N such that

|fnk
(t)− fmk

(t)| > ε for t ∈ Ik.

Thus, by Nested Intervals Theorem, there exists

t0 ∈
∞⋂
k=1

Ik =

∞⋂
k=2

Ik ⊆
∞⋂
k=1

Ik

so t0 ∈ Ik for each k, so
|fnk

(t)− fmk
(t)| > ε. (†)

But, by pointwise convergence, f(t0) = limk→∞ fk(t0) so (fn(t0))∞n=1 ⊂ R is Cauchy. This violates (†). Hence (I) holds.
(II) We use (I), with ε = 1, to find α1 < β1 in (a, b) and N1 in N so

|fn(t)− fm(t)| ≤ 1 for t ∈ [α1, β1], if n,m ≥ N1.

We again use (I), with ε = 1
2 , to find α2 < β2 in (a, b) and N2 in N so

|fn(t)− fm(t)| ≤ 1
2 for t ∈ [α2, β2], if n,m ≥ N2.

Inductively, we obtain

• intervals
(a, b) ⊃ [α1, β1] ⊃ (α1, β1) ⊃ [α2, β2] ⊃ (α2, β2) ⊃ · · · ⊃ [αn, βn] ⊃ (αn, βn) ⊃ · · · , and

• an increasing sequence (Nk)∞k=1 ⊂ N such that

|fn(t)− fm(t)| ≤ 1
k for t ∈ [αk, βk], if n,m ≥ Nk. (‡)

By N.I.T. (Nested Intervals Theorem), there exists

t0 ∈
∞⋂
k=1

[αk, βk] ⊆
∞⋂
k=1

(αk, βk).

Now, given ε > 0, let k in N so 1
k < ε, and then let δ = min{t0 − αk, βk − t0} > 0 so (t0 − δ, t0 + δ) ⊂ (αk, βk) ⊂ [αk, βk].

Hence by (‡), we have that

|fn(t)− fm(t)| ≤ 1
k < ε whenever t ∈ (t0 − δ, t0 + δ), n,m ≥ Nk.
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Hence (fn)∞n=1 converges “uniformly at t0” (see Assignment 6), so f is continuous at t0 (Assignment 6).

Corollary 21.1. Let a < b in R, f : (a, b) → R be a Baire-1 function. The set G = {t ∈ (a, b) : f is continuous at t} is a
dense Gδ-subset of (a, b). [By B.C.T., G ⊂ [a, b] is residual.]

Proof. If t0 ∈ (a, b) and ε > 0, then there exists t ∈ (t0 − ε, t0 + ε) ∩ (a, b) ∩ G. I.e. G ∩ (t0 − ε, t0 + ε) 6= ∅, so G = (a, b)
(relativized topology). Furthermore, the set G is always Gδ (Assignment 6).

Example: χQ︸︷︷︸
nowhere continuous

is not Baire-1 on any interval.

22 2017-11-15

Corollary 22.1. Let f ∈ C(a, b) (a < b in R) be right differentiable on (a, b). Then f ′+ (right derivative) is continuous on a
dense Gδ-subset of (a, b). [In particular, if f is differentiable, f ′ is continuous on a dense Gδ-subset.]

Proof. Let hn(t) = min{b− t, 1
n} for n in N, t in (a, b). Then

fn(t) =
f(t+ hn(t))− f(t)

hn(t)

(
=
f(t+ 1

n )− f(t)
1
n

, n large
)

satisfies that each fn ∈ C(a, b) and
f ′+(t) = lim

n→∞
fn(t) for each t ∈ (a, b).

22.1 On the Banach spaces C(X), X compact

First case X = [a, b], compact interval in R.

Lemma 22.1. For n in N let qn(t) = cn(1− t2)n where cn satisfies

1 = cn

∫ 1

−1

(1− t2)ndt.

Then

(q1) qn(t) ≥ 0 for t ∈ [−1, 1], n in N (non-negative)

(q2)

∫ 1

−1

qn(t)dt = 1, n in N (total mass 1)

(q3) if δ ∈ (0, 1), then

(∫ −δ
−1

+

∫ 1

δ

)
qn(t)dt

n→∞−−−−→ 0 (concentration of mass near 0)

Proof. (q1) and (q2) are obvious. Now for t ∈ [0, 1],

t2 ≤ t =⇒ 1− t ≤ 1− t2

=⇒ (1− t)n ≤ (1− t2)n

and hence

1

cn
=

∫ 1

−1

(1− t2)ndt = 2

∫ 1

0

(1− t2)ndt

≤ 2

∫ 1

0

(1− t)ndt =
−2

n+ 1
(1− t)n+1

∣∣∣∣1
0

=
2

n+ 1
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so cn ≤ n+1
2 . Hence, for |t| ∈ (δ, 1), we have

qn(t) = cn(1− t2)n ≤ cn(1− t2)n

≤ n+ 1

2
(1− t2)n︸ ︷︷ ︸

<1

n→∞−−−−→ 0.

Thus (∫ −δ
−1

+

∫ 1

δ

)
qn(t)dt ≤

(∫ −δ
−1

+

∫ 1

δ

)
n+ 1

2
(1− t2)ndt

= (1− δ)(n+ 1)(1− δ2)n
n→∞−−−−→ 0.

Theorem 22.1 (Weierstrauss approximation theorem). Given a < b in R, f ∈ C[a, b], there exists a sequence (pn)∞n=1 of
polynomial functions such that

(WA) ‖pn − f‖∞ = max
t∈[a,b]

|pn(t)− f(t)| n→∞−−−−→ 0.

Proof. (I) We condition f . Let f̃ ∈ C[0, 1] be given by

f̃(t) = f(a+ t(b− a))− [f(b)− f(a)]t− f(a).

So

• f̃(0) = f(b)− f(a) = 0

• f̃(1) = f(b)− [f(b)− f(a)]1− f(a) = 0.

If we can find a sequence (p̃n)∞n=1 of polynomials,∥∥∥p̃n − f̃∥∥∥
∞

= sup
t∈[0,1]

|p̃n(t)− f̃(t)| n→∞−−−−→ 0

we are done. Indeed, if s ∈ [a, b], then define each pn(s) = p̃n( 1
b−a (s− a)) + f(b)−f(a)

b−a (s− a) + f(a); may be easily shown to
satisfy (WA).
(II) Let us assume that

f ∈ C[0, 1], f(0) = 0 = f(1).

We can extend f to R by letting f(t) = 0 for t ∈ (−∞, 0) ∪ (1,∞), so f ∈ Cb(R), but f(t) 6= 0 only possibly for t ∈ [0, 1], and
f is uniformly continuous [any function in C[0, 1] is uniformly continuous].
Let (qn)∞n=1 be as in the last lemma, and let for each n in N and each t in [0, 1],

pn(t) =

∫ 1

0

qn(s− t)f(s)ds.

Let us compute, for each n, t,

d2n+1

dt2n+1
pn(t) =

∫ 1

0

∂2n+1

∂t2n+1
qn(s− t)︸ ︷︷ ︸

function is 2n+ 2-times continuously differentiable

f(s)ds

= 0, since deg qn(t) = deg(1− t2)n = 2n.

=⇒ pn is a polynomial, deg pn(t) ≤ 2n.
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By change of variable u = s− t,

pn(t) =

∫ 1

0

qn(s− t)f(s)ds

=

∫ 1−t

−t
qn(u)f(u+ t)du

=

∫ 1

−1

qn(u)f(u+ t)du, since f(u+ t) ≥ 0 possibly only on [−t, 1− t].

Hence for t in [0, 1],

|pn(t)− f(t)| =

∣∣∣∣∣∣∣∣∣
∫ 1

−1

qn(u)f(u+ t)du−
∫ 1

−1

qn(u)f(t)du︸ ︷︷ ︸
property (q2)

∣∣∣∣∣∣∣∣∣
≤
∫ 1

−1

qn(u)|f(u+ t)− f(t)|du.

Given ε > 0, let δ > 0 be so |x− y| < δ(x, y ∈ R) =⇒ |f(x)− f(y)| < ε
2 and then

|pn(t)− f(t)| ≤
∫ δ

−δ
qn(u) |f(u+ t)− f(t)|︸ ︷︷ ︸

< ε
2 , by choice of δ

du+

(∫ −δ
−1

+

∫ 1

δ

)
qn(u) |f(u+ t)− f(t)|︸ ︷︷ ︸

≤2‖f‖∞

du

≤ ε

2

∫ 1

−1

qn(u)du+

(∫ −δ
−1

+

∫ 1

δ

)
qn(u)2‖f‖∞du by (q1)

n→∞−−−−→ ε

2
+ 0.

(Continued next lecture.)
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We saw pn is polynomial, i.e. d2n+1/dt2n+1pn(t) = 0. Need approx.
Using (q2) we saw for t ∈ [0, 1]

|pn(t)− f(t)| ≤
∫ 1

−1

qn(u)︸ ︷︷ ︸
(q1)

|f(u+ t)− f(t)|du

Given ε > 0, use uniform continuity of f to find δ > 0 s.t. |x− y| < δ =⇒ |f(x)− f(y)| < ε
2 .
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|pn(t)− f(t)| ≤
∫ 1

−1

qn(u)|f(u+ t)− f(t)|du

=

∫ δ

−δ
qn(u)|f(u+ t)− f(t)|du+

(∫ −δ
−1

+

∫ 1

δ

)
qn(u) |f(u+ t)− f(t)|︸ ︷︷ ︸

≤2‖f‖∞

du

≤
∫ δ

−δ
qn(u)

ε

2
du+

(∫ −δ
−1

+

∫ 1

δ

)
qn(u)2‖f‖∞du

≤ ε

2

∫ δ

−δ
qn(u)du︸ ︷︷ ︸

=1(q2)

+2‖f‖∞

(∫ −δ
−1

+

∫ 1

δ

)
qn(u)du.

Hence, if nε is so n ≥ nε =⇒
(∫ −δ
−1

+
∫ 1

δ

)
qn(u)du ≤ ε

2(2‖f‖∞+1)

we have for n ≥ nε,
|pn(t)− f(t)| ≤ ε

2
+
ε

2
= ε

and we thus have
‖pn − f‖∞ = max

t∈[0,1]
|pn(t)− f(t)| < ε

and we thus see that limn→∞ pn = f in (C[0, 1], ‖·‖∞).

Corollary 23.1. If f ∈ C1[a, b] (differentiable on [a, b], with continuous derivative). Then, given ε > 0, there is a polynomial
p s.t.

‖p′ − f‖∞ < ε

‖p− f‖∞ < (b− a)ε.

Proof. By Weierstrauss approximation theorem, find a polynomial q s.t. ‖f ′ − q‖∞ < ε. Let p(t) = f(a) +
∫ t
a
q(s)ds. Check

that this works. (Remember Fundamental Theorem of Calculus.)

Corollary 23.2. (C[a, b], ‖·‖∞) is separable.

Proof. Let f ∈ C[a, b], ε > 0.
By Weierstrauss approximation theorem, find polynomial p s.t.

‖f − p‖∞ <
ε

2
.

Write p(t) = a0 + a1t+ · · ·+ ant
n. For j = 1, . . . , n let qj ∈ Q be such that

|aj − qj | <
ε

2(n+ 1) max{|a|j , |b|j}

then let r(t) = q0 + q1t+ · · ·+ qnt
n.

Check that for each t in [a, b],
|p(t)− r(t)| < ε

2

so ‖p− r‖∞ = maxt∈[a,b] |p(t)− r(t)| < ε
2 ,

and thus
‖f − r‖∞ ≤ ‖f − p‖∞ + ‖p− r‖∞ < ε.

Theorem 23.1 (nowhere differentiable functions are generic). Let ND[0, 1] denote the set of f in C[0, 1] which are nowhere
differentiable. Then ND[0, 1] is residual in C[a, b].
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Proof. Recall for M, δ > 0,

FM,δ = {f ∈ C[0, 1] : there is x in [0, 1] so
|f(x)− f(t)|
|x− t|

≤M

for all t ∈ [0, 1] ∩ [(x− δ, x) ∪ (x, x+ δ)] }

(A5,Q1).
(I) Let us see that each FM,δ is nowhere dense in (C[0, 1], ‖·‖∞).
To this end, let f ∈ FM,δ, ε > 0.
First, use Weierstrauss approximation to get a polynomial p so ‖f − p‖∞ < ε

2 . In particular, p′ exists everywhere, let
M ′ = supt∈[0,1]‖p′(t)‖.
Let

ϕ : [0,∞)→ [0, 1], ϕ(t) =

{
t− n t ∈ [n, n+ 1], n ∈ {0} ∪ N is even
n+ 1− t t ∈ [n, n+ 1], n ∈ N is odd .

For each k in N let ϕk(t) = 1
kϕ(k2t).

For s, t ∈ [n−1
k2 ,

n
k2 ], n ∈ N,

|ϕk(s)− ϕk(t)|
|s− t|

= k (†).

Now let k be so 1
k <

ε
2 and k −M ′ > M, 1

k2 < δ.
Let ψk = p+ ϕk and we have for s, t satisfying (†),

|ψk(s)− ψk(t)|
|s− t|

=

∣∣∣∣p(s)− p(t)s− t
− ϕk(s)− ϕk(t)

s− t

∣∣∣∣
≥
∣∣∣∣ |ψk(s)− ψk(t)|

|s− t|︸ ︷︷ ︸
k

− |p(s)− p(t)|
|s− t|︸ ︷︷ ︸

≤M ′, by Mean Value Theorem

∣∣∣∣
≥ |k −M ′| = k −M ′ > M.

Hence ψk /∈ FM,δ. And ‖f − ψk‖∞ ≤ ‖f − p‖∞ +

∥∥∥∥∥∥p− ψk︸ ︷︷ ︸
−ϕk

∥∥∥∥∥∥
∞

< ε
2 + 1

k < ε.
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Theorem 24.1. ND[0, 1] = {f ∈ C[0, 1] : f is nowhere differentiable} is a residual set in (C[0, 1], ‖·‖∞).

Proof. We saw:
Each

FM,δ = {f ∈ C[0, 1] : ∃x in [0, 1],
|f(x)− f(t)|
|x− t|

≤M for t ∈ [0, 1] ∩ [(x− δ, x) ∪ (x, x+ δ)]}

is closed (A5), nowhere dense (I).
(II) Let SD[0, 1] = C[0, 1] \ND[0, 1] (“somewhere differentiable”). If f ∈ SD[0, 1], in A5, it was shown that f ∈ FM,δ for some
M > 0, δ > 0. If n ∈ N, with n > max{M, 1

δ }, then FM,δ ⊆ F
n,

1
n
. Then

SD[0, 1] =

∞⋃
n=1

F
n,

1
n
, each F

n,
1
n
closed, F ◦

n,
1
n

= ∅.

Thus SD[0, 1] is meager, so ND[0, 1] = C[0, 1] \ SD[0, 1] is residual.

Remark: Baire Category Theorem tells us that in the complete metric space (C[0, 1], ‖·‖∞).
residual = “large” = “generic”
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24.1 Towards Stone-Weierstrauss Theorem

Notation: (lattice structure)
Let X be non-empty, f, g : X → R. Define

(“join”) f ∨ g : X → R, f ∨ g(x) = max{f(x), g(x)}
(“meet”, min) f ∧ g : X → R, f ∧ g(x) = min{f(x), g(x)}.

Proposition 24.1. Let (X, d) be a (compact) metric space, f, g ∈ C(X). Then f ∨ g, f ∧ g ∈ C(X).

Proof. If a, b ∈ R, then max{a, b} = 1
2 (a+ b) + 1

2 |a− b|.
Hence

f ∨ g =
1

2
(f + g) +

1

2
|f − g|︸ ︷︷ ︸

f−g compact with | · |

∈ C(x).

Also min{a, b} = −max{−a,−b}, so
f ∧ g = −(−f) ∨ (−g) ∈ C(X).

Notation: A family L ⊆ C(X) is called a lattice if for each f, g ∈ L, f ∨ g, f ∧ g ∈ L. Notice if f1, . . . , fn ∈ L,

f1 ∨ f2 ∈ L
=⇒ f1 ∨ f2 ∨ f3 ∈ L
... (obvious induction)
=⇒ f1 ∨ · · · ∨ fn ∈ L.

Likewise f1 ∧ · · · ∧ fn ∈ L.

Theorem 24.2 (Stone). Let (X, d) be a compact metric space and let the lattice L ⊆ C(X) satisfy

• L is a R-space

• 1 ∈ L (contains constant function)

• L separates points: if x 6= y in X, there exists ϕ ∈ L, so ϕ(x) 6= ϕ(y).

Then L = C(X) (L is uniformly dense in C(X)).

Proof. Suppose x 6= y in X and α, β ∈ R. Since L separates points, there is ϕ ∈ L with ϕ(x) 6= ϕ(y). Then

g = α1 +
β − α

ϕ(y)− ϕ(x)
[ϕ− ϕ(x)1] ∈ L as 1 ∈ L,L is a R-subspace

with g(x) = α, g(x) = β.
Fix f ∈ C(X), ε > 0.
(I) Fix x in X. For each y in X, letting α = f(x), β = f(y), if y 6= x, we have that there is

gx,y ∈ L s.t. gx,y(x) = f(x), gx,y(y) = f(y).

Since each f, gx,y are continuous (near y), there are δy > 0 so that

d(z, y) < δy =⇒ gx,y(z) < f(z) + ε i.e. gx,y < f + ε on B(y, δy)

(i.e. gx,y − f is 0 at y so < ε in a neighbourhood of y)
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Since X =
⋃
y∈X B(y, δy), by compactness, there are y1, . . . , ym s.t. X =

⋃m
j=1B(yj , δyj ). Let

gx = gx,y1 ∧ · · · ∧ gx,ym ∈ L

and we have gx ≤ gx,y < f + ε1.
Notice that gx(x) = min{fx,y1(x), . . . , fx,ym(x)} = f(x).

25 2017-11-22

Small goof up:
Then we let gx = gx,y1 ∧ · · · ∧ gx,ym ∈ L.
Now, if z ∈ X, then z ∈ B(yj , δyj ) for some j = 1, . . . ,m and then

gx(z) = gx,y1 ∧ · · · ∧ gx,yn ≤ gx,yj (z) < f(z) + ε, property of δyj w.r.t. yj

so we have
gx < f + ε1, and gx(x) = f(x).

(II) For each x in X, we found gx ∈ L s.t. gx < f + ε1, gx(x) = f(x).
Hence gx(x) = f(x) < f(x) + ε at each x, so there is δx > 0, s.t.

gx(z) > f(z)− ε for z ∈ B(x, δx).

We have X =
⋃
x∈X B(x, δx) so there are x1, . . . , xn ∈ X so X =

⋃n
j=1B(xj , δxj

). We then let

g = gx1
∨ · · · ∨ gxn

∈ L.

For z ∈ X, z ∈ B(xj , δxj
) for some j = 1, . . . , n, so

g(z) ≥ gxj (z) > · · · > f(z)− ε

and thus
g > f − ε1.

Furthermore, each gxj < f + ε1, so if z ∈ X, then g(z) = gxj (z) for some j, so

g(z) = gxj
(z) < f(z) + ε =⇒ g < f + ε1

i.e. f − ε1 < g < f + ε1, so g ∈ B(f, ε) in (C(X), ‖·‖∞).
In summary, given f ∈ C(X), ε > 0, B(f, ε) ∩ L 6= ∅. Hence, L = C(X).

Corollary 25.1. (i) Let L = {f ∈ C[a, b] : f is piecewise affine (A5)}. Then L = C[a, b].

(ii) Let C be the Cantor set and L = {f ∈ C(C) : |f(C)| < ℵ0}. Then L = C(C).

Definition: Let (X, d) be a (compact) metric space. A subset A ⊆ C(X) is called an algebra if for f, g ∈ A,α ∈ R, we have

f + αg ∈ A (A is a R-subspace)
fg ∈ A (A is closed under pointwise multplication)

(If f, g ∈ C(X), then fg ∈ C(X), too.) If f1, . . . , fn ∈ A, f1 · · · fn ∈ A too.
If 1 ∈ A, and p(t) =

∑n
i=1 ait

i, then for f ∈ A,

p ◦ f = a01 + a1f + a2f
2 + · · ·+ anf

n ∈ A.

(fk(x) = f(x)k for x ∈ X.)
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Theorem 25.1 (Stone-Weierstrauss Theorem). If (X, d) is a compact metric space, A ⊆ C(X) satisfies

• A is an algebra

• 1 ∈ A

• A separates points: for x 6= y in X, there is g ∈ A so g(x) 6= g(y)

Then A = C(X) (uniform closure).

Proof. (I) If f ∈ A, then |f | ∈ A. First, since (X, d) is compact, f continuous, f(X) ⊂ R is compact, hence bounded, so
there is a > 0 s.t. f(X) ⊆ [−a, a]. Now, the Weierstrauss approximation theorem provides (pn)∞n=1 of polynomials s.t.
‖pn − | · |‖∞ = maxt∈[−a,a] |pn(t)− |t|| → 0. Hence ‖pn ◦ f − |f |‖∞ = maxx∈X |pn(f(x))− |f(x)|| → 0
Each pn ◦ f ∈ A.
(II) Since A is a R-subspace, so is A (A4 Q1). If f, g ∈ A, let f = limn→∞ fn, g = limn→∞ gn under uniform limits, each
fn, gn ∈ A. Then

f ∨ g = 1
2 (f + g) + 1

2 |f − g|
= lim
n→∞

1
2 (fn + gn)︸ ︷︷ ︸
∈A⊆A

+ 1
2 |fn − gn|︸ ︷︷ ︸
∈A by (I)

∈ A

since A is closed.
Also, f ∧ g = −(−f) ∨ (−g) ∈ A as well.
=⇒ A is a R-subspace and a lattice. Also, 1 ∈ A ⊆ A, and A separates points, hence A separates points.
Thus A is dense in C(X), but is closed, so A = C(X).
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Example: Let I = [a1, b1]× · · · × [an, bn] be a non-empty compact interval in Rn. A polynomial on I is any function

p(t1, . . . , tn) =

N∑
j1,...,jn=1

aj1,...,jnt
j1
1 · · · tjnn

where each aj1,...,jn ∈ R, N ∈ N. By Stone-Weierstrauss Theorem, the family P (I) of polynomial functions is dense in C(I).
Example: Let (X, dX), (Y, dY ) be compact metric spaces. Let ‖·‖ be a norm on R2. Define

ρ(X × Y )× (X × Y )→ [0,∞) by

ρ((x1, y1), (x2, y2)) = ‖(dX(x1, x2), dY (y1, y2))‖.

It is “obvious” that ρ is a metric on X × Y .
(Usually, ‖·‖ = ‖·‖∞, ‖·‖1, ‖·‖2 on R2.)
Furthermore, (X×Y, ρ) is compact. Indeed, let ((xn, yn))∞n=1 ⊆ X×Y be a sequence. Then (xn)∞n=1 ⊆ X admits a converging
subsequence: let x = limk→∞ xnk

∈ X. Then (ynk
)∞k=1 ⊆ Y admits a converging subsequence: let y = lim`→∞ ynk`

∈ Y .
Notice that

ρ((x, y), (xnk`
, ynk`

))

=
∥∥∥(dX(x, xnk`

), dY (y, ynk`
))
∥∥∥

≤ dX(x, xnk`
)‖(1, 0)‖+ dY (y, ynk`

)‖(0, 1)‖
`→∞−−−→ 0.
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Hence ((xnk`
, ynk`

))∞`=1 is a converging subsequence of ((xn, yn))∞n=1. Suppose that each AX ⊆ C(X) and AY ⊆ C(Y ), each
satisfy assumptions of Stone-Weierstrauss Theorem. If f ∈ AX , g ∈ AY ,

f ⊗ g : X × Y → R, f ⊗ g(x, y) = f(x)g(y).

Let AX ⊗AY = spanR{f ⊗ g : f ∈ AX , g ∈ AY }. Convince yourself that AX ⊗AY ⊆ C(X × Y ) and satisfies assumptions of
Stone-Weierstrauss Theorem.
Hence AX ⊗AY = C(X × Y ) (uniform closure).

Corollary 26.1 (Stone-Weierstrauss without constant functions). Let (X, d) be a compact metric space, and A ⊆ C(X)
satisfy

• A is an algebra

• A separates points

• there is x0 in X s.t. f(x0) = 0 for f in A.

Then A = Cx0
(X) := {f ∈ C(X) : f(x0) = 0}.

Proof. First, Cx0(X) is closed in C(X). (Let ϕ : C(X) → R, ϕ(f) = f(x0), which is linear and continuous: ‖ϕ‖ ≤ 1 (seen
before). Then Cx0(X) = ϕ−1({0}) = C(X) \ ϕ−1(R \ {0}︸ ︷︷ ︸

open

)

︸ ︷︷ ︸
open︸ ︷︷ ︸

closed

. Since A ⊆ Cx0(X) =⇒ A ⊆ Cx0(X). )

Second, note that R1 +A = {α1 + f : α ∈ R, f ∈ A} satisfies R1 +A = C(X). If g ∈ R1 +A, write g = α1 + h, α ∈ R, h ∈ A,
and g(x0) = α+ h(x0) = α so g = g(x0)1 + h.
Now, if f ∈ Cx0

(X), there exists (gn)∞n=1 ⊆ R1 + A s.t. ‖f − gn‖∞
n→∞−−−−→ 0 (Stone-Weierstrauss Theorem). Write each

gn = gn(x0)1 + hn where hn ∈ A. Notice that 0 = f(x0) = limn→∞ gn(x0). Hence

‖f − hn‖∞ ≤ ‖f − (gn(x0)1 + hn)‖∞ + ‖gn(x0)‖∞
= ‖f − gn‖∞ + |gn(x0)| (‖1‖∞ = 1)
n→∞−−−−→ 0.

Thus Cx0(X) ⊆ A.

Def: Let C∞(R) = {f ∈ C(R) : lim|t|→∞ f(t) = 0}. Then C∞(R) ⊆︸︷︷︸
exercise

Cb(R) and is a closed subspace. (L± : Cb(R) →

R, L±(f) = limt→±∞ f(t), then L+, L− are linear and with |||L±||| ≤ 1. Then C∞(R) = L−1
+ ({0}) ∩ L−1

− ({0}) is closed.)

Corollary 26.2. Let A ⊆ C∞(R) satisfy that

• A is an algebra

• A separates points

• for each t of R, there is f ∈ A s.t. f(t) 6= 0.

Then A = C∞(R) (uniform closure).

Proof. (Sketch of proof) ψ : R→ (−1, 1), ψ(t) = t
|t|+1 , then ψ is continuous and bijective with ψ−1(−1, 1)→ R continuous.

Let S = {(x, y) ∈ R2 : x2 + y2 = 1}.

ϕ(−1, 1)→ S \ {(−1, 0)}
ϕ(s) = (cos(πs), sin(πs))

45



Fall 2017 Real Analysis Course Notes 27 2017-11-27

so ϕ is a continuous bijection with continuous inverse. Hence, ϕ ◦ ψ : R→ S \ {(−1, 0)} is a homeomorphism, i.e. continuous
bijection with continuous inverse.
Define

Ψ : C∞(R)→ C(−1,0)(S)

Ψ(f)(x, y) = f(ψ−1 ◦ ϕ−1(x, y)).

Check that Ψ is a surjective isometry, between (C∞(R), ‖·‖∞) and (C(−1,0)(S), ‖·‖∞), and hence has isometric inverse.
We have Ψ(A) ⊆ C(−1,0)(S) satisfies assumptions of last corollary, so Ψ(A) = C(−1,0)(S) but it follows that A = Ψ−1(Ψ(A)) =
C∞(R).
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Today’s subject: towards Arzela-Ascoli Theorem (by guest lecturer)

Def: Let (X, d) be a complete metric space. Let F ⊆ X be a subset. We say F is relatively compact if F is compact. (Here F
means the closure of F .)

Proposition 27.1 (Properties of relatively compact subsets). Let (X, d) be a metric space, F ⊆ X. TFAE:

1. F is relatively compact

2. Every sequence (xn) admits a Cauchy subsequence (xnk
)

3. F is totally bounded

Proof. (i) =⇒ (ii) Let (xn) be a sequence in F . Since (xn) is in F and F is compact, (xn) has a Cauchy subsequence (xnk
)

(that may converge to a point in F \ F ).
(ii) =⇒ (i) Let (xn) be a sequence in F . We want to show there is a subsequence (xnk

) converging to a point in F (note this
is nonempty by characterization of the closure).
For each n ∈ N, let yn ∈ B(xn,

1
n ) ∩ F . Now, by (ii), there is a Cauchy subsequence (ynk

).
Claim: (xnk

) is Cauchy.
For k, ` ≥ 1,

d(xnk
, xn`

) ≤ d(xnk
, ynk

) + d(ynk
, yn`

) + d(xn`
, yn`

)

≤ 1

nk
+ d(ynk

, yn`
) +

1

n`

k,`→∞−−−−−→ 0.

(i) =⇒ (iii) F is totally bounded since it is compact. So for ε
2 > 0, there are x1, . . . , xn ∈ F s.t. the B(xi,

ε
2 )s cover F (i.e.⋃n

i=1B(xi,
ε
2 ) ⊇ F .)

For each i, choose yi ∈ B(xi,
ε
2 ) ∩ F . Then B(yi, ε) ⊇ B(xi,

ε
2 ) so y1, . . . , yn is an ε-net for F .

(iii) =⇒ (i) Since F is totally bounded, there is an ε-net y1, . . . , yn ∈ F . So

F ⊆
n⋃
i=1

B(yi, ε)

=⇒ F ⊆
n⋃
i=1

B(yi, ε)

=⇒ F ⊆
n⋃
i=1

B(yi, 2ε).

So F is totally bounded.

Def: [Equicontinuity] Let (X, d) be a (compact) metric space. A subset F ⊆ C(X) is equicontinuous if for ε > 0 and x ∈ X
there is δ > 0 s.t. if d(x, y) < δ then |f(y)− f(x)| < ε∀f ∈ F (holds for all f simultaneously).
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Lemma 27.1. If (X, d) is compact and F ⊆ C(X) then F is equicontinuous ⇐⇒ F is uniformly equicontinuous meaning
for ε > 0 there is δ > 0 s.t. if x, y ∈ X and d(x, y) < δ then |f(x)− f(y)| < ε∀f ∈ F .

Proof. If F is uniformly equicontinuous it is clearly equicontinuous.
For the other direction, fix ε > 0. For each x there is δx s.t. if d(x, y) < δx then |f(y)− f(x)| < ε/2∀f ∈ F . Then (B(x, δx))x∈X
is an open cover. Let δ > 0 be the corresponding Lebesgue covering number. So for any y ∈ X, B(y, δ) ⊆ B(x, δx) for some
x ∈ X. So if y, z ∈ X with d(y, z) < δ, choose x ∈ X s.t. B(y, δ) ⊆ B(x, δx), then

|f(y)− f(z)| ≤ |f(y)− f(x)|+ |f(x)− f(z)| (z ∈ B(x, δx))

< ε/2 + ε/2 = ε.

Ex: Let F be a set of differentiable functions from [0, 1] to R s.t. |f ′(x)| ≤M∀f ∈ F, x ∈ [0, 1] for some M . By the MVT, for
x, y ∈ [0, 1] there is z ∈ [0, 1] s.t. M ≥ |f ′(z)| = |f(y)−f(x)|

|y−x| .

|f(y)− f(x)| ≤M |y − x|∀y, x ∈ [0, 1],∀f ∈ F.

Now take δ = ε
M . Then if |x− y| < δ then

|f(x)− f(y)| ≤M |x− y|

< M
δ

M
= δ.

28 2017-11-29

Office Hours:
Today: 2:30-4:30
Tomorrow: 2-4 pm

Last time:
In complete (X, d), TFAE:

(i) relative compactness

(ii) every sequence admits a Cauchy subsequence

(iii) total boundedness

Discussed for F ⊂ C(X):

• equicontinuity =⇒ uniform equicontinuity if (X, d) compact

• pointwise boundedness

Theorem 28.1 (Arzela-Ascoli Theorem). Let (X, d) be a compact metric space, F ⊂ C(X). Then

F is relatively compact in (C(X), ‖·‖∞) ⇐⇒ F is both equicontinuous and pointwise bounded.

Proof. (=⇒) F is totally bounded. In particular, F is bounded: supf∈F ‖f‖∞ <∞ (totally bounded =⇒ bounded). Hence
for x in X, supf∈F |f(x)| < supf∈F supx∈X |f(x)| = supf∈F ‖f‖∞ <∞.
Given ε > 0, let f1, . . . , fn ∈ F s.t. F ⊆

⋃n
j=1B[fj ,

ε
3 ]. Let for j = 1, . . . , n, δj > 0 be so for x, y in X, d(x, y) < δj =⇒

|fj(x)− fj(y)| < ε
3 (uniform continuity of fj). Then let δ = min{δ1, . . . , δn} and then for x, y in X, d(x, y) < δ, we have for

f in F , then f ∈ B[fj ,
ε
3 ] for some j. Then

|f(x)− f(y)| ≤ |f(x)− fj(x)|+ |fj(x)− fj(y)|+ |fj(y)− f(y)|
< ‖f − fj‖∞ + ε

3 + ‖f − fj‖∞
< ε

3 + ε
3 + ε

3 = ε.
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Hence, F is (uniformly) equicontinuous, thus equicontinuous.
(⇐=) Let (xn)∞n=1 ⊂ X satisfy that there are n1 < n2 < n3 < · · · for which

X =

∞⋂
k=1

nk⋃
j=1

B[xj ,
1
k ] (†)

(assignment 5, (X, d) compact =⇒ (X, d) separable).
Now, let (fn)∞n=1 ⊆ F . We wish to extract a uniformly Cauchy subsequence, hence showing F is relatively compact.
(I) Let us extract a candidate Cauchy subsequence. This technique is a variant of “Cantor’s diagonalization argument”. First,
(fn(x1))∞n=1 ⊂ R is bounded (pointwise bounded assumption) so by Bolzano-Weierstrauss admits a Cauchy subsequence
(fnk

(x1))∞k=1 ⊂ R. Let f1,k = fnk
for each k. Second, (f1,n(x2))∞n=1 ⊂ R is bounded, and again admits a Cauchy subsequence

(f1,nk
(x2))∞k=1 ⊂ R. Let f2,k = f1,nk

.
Inductively, we continue. We build sequences (f1,k)∞k=1, (f2,k)∞k=1, . . . , (fn,k)∞k=1, · · · ⊆ F which satisfy

• m < n, (fn,k)∞k=1 is a subsequence of (fm,k)∞k=1

• (fn,k(xn))∞k=1 ⊂ R is Cauchy.

We now let
gn = fn,n.

Then (gn)∞n=m is a subsequence of (fm,n)∞n=1 so (gn(xm))∞n=1 is Cauchy in R, (being a subsequence of (fm,n(xm))∞n=1). Thus
(gn(xm))∞m=1 is Cauchy for each m in N, and (gk)∞k=1 is a subsequence of (fn)∞n=1.
(II) Let us show that (gn)∞n=1 is Cauchy in (C(X), ‖·‖∞), i.e., Cauchy in ‖·‖∞.
Given ε > 0, our set F , being equicontinuous on compact (X, d), is uniformly equicontinuous (lemma Monday), so there is
δ > 0 s.t. |f(x)− f(y)| < ε

3 whenever x, y ∈ X, d(x, y) < δ and f ∈ F .
Now, let k in N satisfy 1

k < δ, and we have from (†) that X =
⋃nk

j=1B[xj , δ].
Now, for j = 1, . . . , nk, let Nj in N be s.t. m,n ≥ Nj =⇒ |gm(xj)− gn(xj)| < ε

3 (i.e. (gn(xj))
∞
n=1 is Cauchy). Let

N = max{N1, . . . , Nnk
}. If x ∈ X, so x ∈ B[xj , δ] for some j = 1, . . . , nk, and we have for m,n ≥ N that

|gm(x)− gn(x)| ≤ |gm(x)− gm(xj)|+ |gm(xj)− gn(xj)|+ |gn(xj)− gn(x)|
< ε

3︸︷︷︸
thanks to uniform equicontinuity of F ; gn ∈ F

+ ε
3︸︷︷︸

n,m≥N≥Nj Cauchy at xj

+ ε
3︸︷︷︸

thanks to uniform equicontinuity of F ; gn ∈ F

= ε.

Hence ‖gm − gn‖∞ = maxx∈X |gm(x)− gn(x)| < ε.

– END OF FINAL LINE (except Assignment 7) –

29 2017-12-01

Theorem 29.1 (Peano’s Theorem). Let D ⊂ R2 be open and F : D → R be continuous, and (t0, y0) ∈ D. Then there are
a < b in R so t0 ∈ (a, b) for which

(IVP) f ′(t) = F (t, f(t)), f(t0) = y0, t ∈ (a, b)

admits a solution.

(This is stronger than Picard-Lindelof, which required a Lipschitz condition on the second variable of a two variable function.)
The solution here may not be unique.

Proof. (Most of proof):
(I) (Get a < b.) Let R = [a1, b1]× [a2, b2] ⊂ D (compact interval) so (t0, y0) ∈ R◦ (interior), and let M = max(t,y)∈R |F (t, y)|.
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We let
W = {(t, y) ∈ D : |y − y0| ≤M |t− t0|}

and a < b in R so
([a, b]× R) ∩W ⊂ R.

(II) (Work on [t0, b], find a particular family of piecewise affine functions.) Given ε > 0, the uniform continuity of F on R
provides δ > 0 such that

(s, x), (t, y) ∈ R with max{|s− t|, |x− y|} = ‖(s, x)− (t, y)‖∞ < δ

=⇒ |F (s, x)− F (t, y)| < ε.

We partition [t0, b], t0 < t1 < · · · < tn = b, so maxj=1,...,n(tj − tj−1) < δ
M+1 (let M = 0).

We define fε : [t0, b]→ R inductively by

fε(t) =


y0 + F (t0, y0)(t− t0) t ∈ [t0, t1]

fε(t1) + F (t1, fε(t1))(t− t1) t ∈ (t1, t2]

...
fε(tn−1) + F (tn−1, fε(tn−1))(t− tn−1) t ∈ (tn−1, tn]

.

Two nice properties (exercise):

• graph of fε on [t0, b] is in R, so maxt∈[t0,b] |fε(t)| ≤ max{|a2|, |b2|}

• if s < t in [t0, b], then |fε(t)− fε(s)| ≤M |t− s| (†).

These estimates are independent of ε. I.e. if we form K = {fε}ε∈(0,∞) it is

• pointwise bounded & equi-Lipschitz =⇒ (uniformly) equicontinuous.

Hence K is relatively compact.
(III) (Relate K = {fε}ε∈(0,∞) to the (IVP).) Fix fε, ε and δ as in (ε− δ) above. If t ∈ (tj , tj+1), j = 0, . . . , n− 1 then

f ′ε(t) = F (tj , fε(tj)). (?)

Also, for such t as above, then |t− tj | < δ
M+1 so by (†)

|fε(t)− fε(tj)| ≤M |t− tj | ≤ δ
M

M + 1
< δ

so, by choice of δ,

|F (t, fε(t))− F (tj , fε(tj))| < ε

(using (?)) =⇒|F (t, fε(t))− f ′ε(t)| < ε (??).

Thus for t ∈ [t0, b] we have

fε(t) = y0 +

∫ t

t0

f ′ε(s)ds (piecing together F.T. of C., as f ′ε(t) exists except at t1, . . . , tn−1)

= y0 +

∫ t

t0

F (s, fε(s))ds+

∫ t

t0

[f ′ε(s)− F (s, fε(s))]ds
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Let f̃ε(t) = y0 +
∫ t
t0
F (s, fε(s))ds, and we have for t ∈ [t0, b]

|fε(t)− f̃ε(t)| ≤
∫ t

t0

| f ′ε(s)− F (s, fε(s))︸ ︷︷ ︸
<ε

|ds

(? ? ?) ≤ (t− t0)ε ≤ (b− t0)ε.

We now consider a sequence (f 1
n

)∞n=1 ⊆ K. By relative compactness, we get a uniformly Cauchy, hence uniformly converging

subsequence (f 1
nk

)∞k=1, f = limk→∞ f 1
nk

(uniform limit). Let f̃(t) = y0 +
∫ t
t0
F (s, f(s))ds.

We have ∥∥∥f − f̃∥∥∥
∞
≤
∥∥∥f − f 1

nk

∥∥∥
∞

+
∥∥∥f 1

nk

− f̃ 1
nk

∥∥∥
∞

+
∥∥∥f̃ 1

nk

− f̃
∥∥∥
∞

We have limk→∞ f 1
nk

(s) = f(s) uniformly for s ∈ [t0, b], so, by uniform continuity limk→∞ |F (s, f 1
nk

(s))− F (s, f(s))| = 0

uniformly for s in [t0, b], and thus (‡) k→∞−−−−→ 0. In conclusion∥∥∥f − f̃∥∥∥
∞
≤
∥∥∥f̃ 1

nk

∥∥∥+ (b− t0)
1

nk
+ (‡)

=⇒ f(t) = f̃(t) = y0 +
∫ t
t0
F (s, f(s))ds, i.e. f satisfies (IE) =⇒ (IVP).
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