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Fall 2017 Real Analysis Course Notes 2 CARDINAL ARITHMETIC

Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone interested in
the material. The goal is to provide an end-to-end resource that covers all material discussed in the course displayed in an
organized manner. If you spot any errors or would like to contribute, please contact me directly.

1 CHAINS AND ZORN’S LEMMA
Let (X, <) be a poset. A chain is any subset C' C X such that (C, <) is totally ordered.

Office hours:
1. Today 2:30 - 3:20
2. Wednesday next week 2:30 - 4:30

Or, email nspronk@uwaterloo.ca

2 CARDINAL ARITHMETIC
1. :(

ii. R ~ (=1,1), f(z) = x/|z| + 1 (exercise: exhibit f~1)
f

ili. a <bin R.(0, 1)\;(@,1)),9(%) =a+z(b—a)
g

Notation: Ny = |N| ("aleph naught"), ¢ = |R| ("continuous")
Arithmetic: Let A, B be sets.

|4 +1B| = |AU B]
|Al[B] = [A x B
|A|IBl = |AP|(B # @, A® = {f : B— A| function })

AU A is two copies of A, ~ A x {1,2}

Properties

e (commutativity) |A| + |B| = |B| + |4|, |A||B| = |B||4]
e (distributivity) |A|(|B| + |C|) = |A||B| + |A]|C|
Ax (BUC)~(AxB)U(AxC(C)
e (Exponential laws)
|A[IBIHICT = | 4|IBl|4]IC1 | AIBIICT = (| A4]1BHIC]
(B# 2 #C)

ABYC AP x A% via o — (0|, ¢lc)

APXC  (ABYC via p — (p(b,-) : C — A)
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2 CARDINAL ARITHMETIC

Now, for sets A, B, define A < B if there is an injection f: A — B.

Sometimes write A < B. As above:
f
(reflexivity) A =< A
id
(transitivity) A< B,B<C = A=<C

Seems reasonable to write |A| < |B], in this case.

Question: Is < in cardinal numbers anti-symmetric?

Theorem 2.1 (Cantor-Bernstein-Schroder Theorem). If, for non-empty set A, B we have A < B, B < A, then A ~ B. Ie. if

|A| < |B| and |B| < |AJ, then |A| = |B].
A

Proof. Our assumption is that we have injections A < B, B =
~— ~—
@

P
To avoid triviality, let us suppose that neither ¢ nor ¢ is surjective. Thus ¢(A) C B, Yo p(A) CY(B) < A

Let Ag = A, A1 = ¢(B), Ay = 1p o p(A) and we inductively define A, 12 = g(A,),g =1 0.
Then Ay C A; C Ay, so by applying injection g,

Ay C AL C Ay

An+1 Q An ,Q An—l

Hence, we may decompose

A=Ag= (Ao \ A1) UA;
= (Ag\ A1) U (A1 \ A2) U Ay

(@

(An—l \ An) U Aoo

n=1

where A =2, A =,y Ap, we likewise observe
A =UnZy(An1 \ An) U A,
Picture:
AO\AlAl\AQLi,A_OO,
—/_/"

Ay

Ao
Using definitions of the sets A, (n > 2), we have g(A,—1 \ A,) = Apt1 \ Anyo. Define
g(z), fxed,_1\ Ay, nodd

T otherwise

h:A0—>A1,h(q:):{

)

Then h is a bijection. Thus

so we conclude that A ~ B.

Examples:
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1. Let @ < bin R. Then [a,b) < R (obvious)

R~ (~1,1) ~ (0,1) ~ Ea,bfj[ b)

Ie. [a,b) = R and R < [a, b) ~ [a,b)

3 2017-09-18

3.1 LAST crLass: C.B.S THEOREM

If A< Band B < A then A ~ B.
Examples:

(i) P(N) ~R, ie. [P(N)| =ec.

,neA
P(N) ~ {0, 1} via A — x4 where ya(n { ¢ A ("characteristic indicator")
,n
[e.9]
N : o) .
{0,1}" ~ P(N), via (zg)52, = Xa where Z = 0.212223 ... (ternary representation)
injective k=1
>N T,
[0,1) ~ {0, 1}N, 0.x1x0m3 -+ = Z o (binary representation) (never allow 0.111--- = 1!) — (23)72,

k=1
P(N) ~ {0,1}" < [0,1) = {0,1}" ~ P(N)
so, by C.B.S. Theorem, we have |P(N)| = |[0,1)| = ¢ = |R].
(if)
2nd lecture:
(iii) N~ Q ~ N?
N=<Q
Q XZxN, via % — (m,n) (ged(m,n) =1)
ZxN~N*=NxN, asZ~N
N? < N, via (m,n) — 2™3"
Hence N<Q < Z x N~ N2 < N so, by C.B.S. Theorem, N ~ Q ~ N2,
Notation: We say that a set A is
e countable if A <N, i.e. |4] <N
e denumerable if A ~ N, i.e. |4] =Ny
Proposition 3.1 (surjectivity). Suppose X and Y are non-empty sets and there is a surjection g : X — Y. Then ¥ < X.

Proof. Let f:P(X)\ {@} — X be a choice function (AC). For each y € Y, we have g7 '({y}) = {r € X : g(z) =y} # &, as
g is surjective. Define h: Y — X be given by h(y) = f(¢7*({y})) and h is injective, as if y1 # yo2, {y1} N {y2} = T, so we see

that g~ ({11 }) N g~ ({y2}) = @ too. O
Theorem 3.1 (Comparison Theorem). Let X,Y be sets. Then either X <Y or Y < X.
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3 2017-09-18

Proof. If X #+ &, then X <XY; likewise if Y = @. Hence assume X # @ # Y. We let

A={(Af): AcP(X)\{@}, f € Y?is an injection mapping from A to Y}

We observe that A # @. If z € A,y € Y, then ({z},2 —> y) € A. On A let

(A, f)2(B,g) &= ACBCX, gla=f

Notice that < is reflexive, anti-symmetric, and transitive, hence is a partial order on A. Let T'{(A;, fi) }icr be a chain in

(A, =). Welet A=J;c; A; and f € Y be given by f(z) = f;(x) provided z € 4;.
Notice that f is well-defined. Say = € A; and « € Aj, then, since I' is a chain, A; C A;, say, and f; |a,= fi.

Furthermore, if 21 # x5 in A, then 1 € A;,, 22 € A;,, and we may suppose A;, C A;,. Then f(z1) = fi,(x1) = fi,(x1) #

fir(x2) = f(x2), so f is an injection. Thus (A, f) € A, and is an upper bound of T

Thus, there is a maximal element (M, g) € A, by Zorn’s Lemma.

Case #1: M = X. Then X = M;gY.

Case #2: M C X. We wish to see that g must be surjective. Suppose not, i.e., there is yg € Y\ g(M). Since M C X, there

isxo € X\ M. Define h : M U{zo} =Y by

eM
h(z) = {g(x) ‘ injective!

Yo T = T

Then (M U{zo},h) € A, and (M, g) £ (M U {zo}, h), contradicting maximality of (M, g). Thus, we have that that

g is surjective. Thus ¥ <X X.
~—

gfl

Proposition 3.2. Let A be a set. Then TFAE:
(i) n < |A| for all n € N
(ii) No < |A] (A is infinite)

1+ |A| = |A| (Hilbert hotel)

(iv

)
)
(iii) there is B C A s.t. |B| = |A]
)
)

(v) o+ |A] = |4]

Proof. (1) = (ii) We have that for each n in N there is an injection ¢y : {1,...,n} — A. Inductively, define f: N — A by

() =@ (1)

f(n+1) =pni1(k)

where k =minj € {1,....,n+1} 1 @n1(j) € {f(1),..., f(n)}.
Then f is injective by construction.

(ii) = (iii) We have Nx;A. Let B = A\ {f(1)}. Define g : A — B by

T otherwise

_Jfn+1) ifz=f(n),neN
g9(z) =

Then A ~4 B, ie., |A| =|B].

(iii) = (iv) We suppose there is zg € A\ B and B ~ A. Thus A ~ B < BU {zo} < A so by C.B.S. Theorem A ~ B and
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A~BU{zo} ~AU{1}, ie. |Al =|A|+1.
(iv) = (i) We have {1} UA ~, A. Then p(A) C A. Thus pop(A) C p(A) C A, and, by induction,
P A) CeTHA) S C A

>=

Sﬁo...osﬁ
——
n times

Hence |A| > |A\ ¢°™(A)| > n (at each stage above, we gain at least one point).
(ii) = (v) We have N <y A. Let g : NU A — A,

f(2n) ifr=nneN
gx)=¢ f@n+1) fz=f(n)eAneN
x otherwise
(v) = (ii) Ng < Ny + |A] = |A| by assumption. O

Corollary 3.1. If A € P(N), then either A is finite or denumerable.

Proof. Either n < |A| for all n, or |A| < n (Comparison lemma). O
Theorem 3.2 (Cantor). For any set X, |X| < |P(X)].

Proof. :( O

Cantor’s paradox: There is no “set” of all sets.

4 2017-09-22

4.1 METRIC SPACES

Example (French railroad / metro metric): Suppose we have a set X # &, and a function f : X — [0,00) which satisfies
f71({0}) = {po}. Notice, then, that f(z) > 0if z € X \ {po}-

df XXX — [0,00), df(x7y) = f(m> + f(y)

ifex#y 0ifz=y.
Easy exercise: this is a metric.
(Belongs to family of weighted graph metrics.)

1
2llp = (Jea]” + - -+ |2n|?) 7

v ePlogz v ~
xTrs =
0 x=20

Lemma 4.1. Let o, >0in R, 1 < p < 0o and ¢ is chosen so that % + % =1(ieq= 1%) then

with equality when of = §9.
Proof. Consider the graph of y = 27~ (assume p > 2).

z=y'p—1=ylp=yi*
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Then 5
aﬁg/ xpfldx—k/ Yy tdy
0 0

A1 AZ

(Equality holds only if 8 = aP™1 = Blq — 1 = B9 = aP)

aP  Ba
p q
Holder’s Inequality

O
5 2017-09-25
Lemma: «, > 0in R, 1 <p<oowithqsatisfying%+%:>a6§ %}—&—%{I
Holder’s Inequality: If z,y € R™,1 < p < co and ¢ satisfies % + % =1, then
1 1
n n n P n P
1> wyl < Z jllys < (Dl STyl =yl
j=1 1-ineq. of |-| 7 Jj=1 Jj=1 j=1
Proof. If ||z||p||y|lq = 0, then = 0 or y = 0 and the inequality is trivial. Assume ||z||,||y|l; # 0. For j =1,...,n, let
|75 A
a5 = ) 6 -
Tl T Hlylle”
Then
Z ol = 3
|x||p‘|y||q =1
n [o? o
gz —2L 4+ | by lemma
=1 1
Is , 1
ST o
it
pJ:1 q =
n
y:|?
pnxnp Z' "+ Ty 21|
1 1
= -4z
P q
=1
O

Theorem 5.1 (Minkowski’s Inequality). Let z,y € R™ and 1 < p < co. Then

|z +yllp < llzllp + [1Yllp-
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Proof. If x4+ y = 0 then this is trivial, so suppose x + y # 0.

n
o +yllp = lwj +y;l”
j=1

n
=z +yslla + gl

j=1

n

<> (sl + )l + g 177)

J=1
n n
=zl +y P+ [yl + oy
j=1 j=1
1 1

n a n P n
Dol Ayl T (D gl || D ey P
j=1 =1 =1

|~

P

Q=

IN

n
> gl
=1

(zllp + lyllp) | D g +y;1®~ D

We have
and thus

e+ yll5 < (fellp + llyllp) | D e +u;l°
j=1

P
= (llllp + llyllp)llz + yllp
P
Now, divide ||z + y||g # 0 to get

b
llz +yllp = [l +yll»
< llzllp +lylls

(sincep—%:p(l—%):l). O
Corollary 5.1. Given 1 < p < 00, || - || is @ norm on R™.
Proof. Clearly || - ||, is non-negative and non-degenerate. If o € R,z € R™ then
n 1
llazl, = (3 ;)
j=1
n 1
=l lz;1P)
j=1
= lalllz],
Finally, subadditivity is provided by Minkowski’s inequality. O

|z|P = eplog ]
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5.1 THE ¢,-SPACES

Consider RY = {z = (24,)$2, : 2 € R} which is a R-vector space:

(@r)pzy + (Wr)rey = (@r + Yr)ers a(Tr) iy = (rr) iz
We let for 1 < p < o0
by ={x = (zp)72, €RY: Z |zk|P = nh_{r;oz |z |P < oo}
k=1 k=1
and

loo = {& = (@n)2y sup Jax | < o0},
keN

On ¢, we define
(Zjoilagl)r i 1<p <oo
Izl = .
ZkeN |z | ,if p=o00
Theorem 5.2. Let 1 < p < oco. Then ¢, is a R-subspace of RY and || - ||,, is a norm.

Proof. We prove these together. Suppose that =,y € £,. Then

o0 »
|z + yllp, = (Zl"k +yk|p> if 0o, treat 0P = 00
k=1

p

= 1 p
[t E e

n P
. 1. . . 1
= lim (E |xk+yk|p> x — x? is continuous on [0,00), if £ — oo, x? — 00
n—oo
k=1

B =

IA

1 1
nll_}n;o ( g |2k ) + nh_}rrgo <,§_1 |y ) Minkowski applied on each n

k=1
1
n P
. » o .
+ (nlin;o ,;,1 |y ) continuity again

n
n—oo
k=1
1

~(Gomr)  (Emr)

= [lz[lp + llyllp
< 0

P

Thus « + y € £, and we get subadditivity of || - ||,.
We note that non-negativity and non-degeneracy of || - ||, are obvious. Likewise, the | - |-homogeneity is straightforward. [

Theorem 5.3. (¢, || ||oo) is @ normed vector space.



Fall 2017 Real Analysis Course Notes

6 2017-09-29

Proof. If z,y € ¢, then

|2 4+ ylloo = sup |zx + Yl
keN

< sup(|z| + [y])
keN

<

sup (|z;] + [yxl)

J,keN

= sup || + sup |yx|
jEN keN

= 7]]oo + [[¥l]oo

Other properties are very easy.

6 2017-09-29

) X #£@st. | X|>2
0 z=y

discrete metric d(z,y) =
@y =9, . 4y

For zy € X,

x e>1

Blr,c] = {{mo} 0<ex<l

B(x,s):{{xO} 0<e<l1

x e>1

ii) (geometry of balls in R?)
1<p<00,By(0,1) = {z € R? : dp(0,2) = [l , < 1}

Proposition 6.1. (X,d) a metric space.

i) X, @ are both open and closed.

ii) If {U;}ier is a family of open sets, then | J,_; U; is open.

icl

)
)
iii) If {Uy,...,U,} is a finite family of open sets, then ﬂ?zl U; is open.
iv) If {Fi}icr is a family of closed sets, then (1, ; U; is closed.

)

v) If {Uy,...,U,} is a finite family of closed sets, then (J;_, U; is closed.

Proof. i) Let x € X, then « € B(z,1) C X, so X is open. So @ = X \ X, X = X \ & are closed.

i) Let v € U = ;¢

U;. Then there is some iq in I s.t. « € U,,, which is open, so there is e, > 0s.t. € B(z,e,) CU;, CU.

iii) Let € V. = (N, U;. Then for each i = 1,...,n, there is &; > 0 s.t. B(x,&;) C U;. Let ¢ = min{ey,...,&,} =

B(z,e) C (i, B(z,e;) C V.

iv), v) De Morgan’s Laws.

Given a metric space (X,d), A C X, we define the boundary of A:

0A={re X :VYe>0,B(z,e)NA+# 3, B(z,e)\ A# I}
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Remark: 04 = 9(X \ A).
Interior of A :
AO:U{UQX:UQAandUisopen}.

Proposition 6.2 (characterizations of interior). If (X, d), A are as above then
A° ={rx e X :3e, >0s.t. B(z,e,) C A}
= A\ 0A.
Proof. Let x € A. Then either:
e for some ¢, > 0, B(z,e,) CA= 2 € A°, or
e Ve > 0,B(x,¢e) \ A# & = since x € AN B(x,e), x € OA.
Since A° C A, the proposition holds. O

Def: (X, d) a metric space, (z,)22; € X and zo € X. Say ()32, converges to xg, i.e. lim, ;o0 Zp, = To O T, ——— x¢ if
Ve >0, In. € Ns.t. n > n. = d(xzg,z,) < €.
Remark: The limit, if it exists, is unique. Suppose g = lim,, o0 Ty, Yo = liMy, 00 Tn, then given € > 0, In., nes in N s.t.

n > n. = d(zg,x,) < €
n > ns = d(yo, xn) < €.

Now if n > max{n.,ne }, then

d(zo,y0) < d(xo, ) + d(xpn,y0) < €
= d(z0,¥0) = 0, 50 zo = yo.

Example: Let (V,||-||) be a normed vector space. A subset {e,}52; C V is a Schauder basis if for each z € V, 3 a unique
sequence {z, }52; s.t. & = lim, 00 Y o Tpex in V.
In¢,,1<p<oo,lete,=(0,...,0, 1 ,0,...).

n-th place

Let, for (X, d), A as above, the set of accumulation points (cluster points) be given as

A'={z € X :Ve >0,B(z,e) \ {z} NA # @.}
e ——

punctured ball
Call elements of A\ A’ isolated points.

Proposition 6.3. Given (X,d), A as above, we have
A={reX z= lim ., (xn)ozq C A\ {z}.}
Proof. If x € A’ let x1 € (B(z,1)\ {x})\ 4, and z,,,1 € (B(z,&,) \ {z}) \ A, where &, = min{%,d(z,z,)}.

no
Then = = lim,, o z,, while (z,)%2; C A\ {z}. Note z1,z2,... are distinct.
Converse direction: definition of limits. O

7 2017-10-02

Def: Given a metric space (X, d) and A C X, define the closure of A by

A=n{FCX:ACF,Fisclosed in X.}

10
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Of course A° C A C A.

Theorem 7.1 (characterization of the closure). Given a metric space (X,d), A C X, the following sets are the same:
A AUOA AU A

("meet" set) Ay = {z € X : for any € > 0, B(z,e) N A # &}
("limit" set) Ay, = {r € X : x = lim;,_, o0 z,, where (z,)52; C A}
(The notations Ay, Ay will not be used afterwards; we shall use A.)

Proof. We have

A=n{FCX:ACF,F closed }
=N{X CU:UCX\ AU openin X}
=X\U{U:UC X\ A,U open in X}
= X\ [(X \ A)°] complement of interior
=X\ [(X\A4)\9(X\ A)] characterization of (X \ A)°
=X\ [(X\A4)\04]
=AUJA
(Nier(X \U;) = X \ UjerUs)
We thus have A = AU 0A.

Now if z € AU DA, then for each £ > 0, we have that B(x,e) N A # & [i.e. either x € A so x € AN B(z,¢), or x € 9A, so
B(z,e)NA+# @]. Thus AUJA C Ayy. Conversely, if @ € Ay, then, either

e thereise > 0so B(z,e) CA= 2 € A°C A, or
e for every € > 0 we have B(x,¢) \ A # @ in which case x € JA.

Hence, r € Ayy — v € AUIJA so Ay C AUOA.

If z € AU A’, then for each € > 0, we have B(x,e) N A # @. Indeed, as above, either x € A, so for any € > 0,2 € B(z,¢) N A,
orxz € A, so B(x,e) N A D (B(z,e)\ {z})NA#@. Hence AUA" C Ay,

The definition of the limit of a sequence shows that Ay, = Ay.

Finally, consider

X\ (AUA) C{z € X : there exists e, > 0 s.t. B(x,e,)NA=9,B(z,e,) C X\ A}
= (X\A) = X\ [(X\4)]CX\[X\(AuA)].
Hence
A=X\[(X\A)]CX\[X\(AUA)]
=AUA.

Hence ACAUA CAyy=A,s0 A=AUA. O

7.1 CONTINUITY

Def: Let (X, dx) and (Y, dy) be metric spaces f : X — Y and 2y € X. We say that f is continuous at zg if given & > 0, there
is § > 0s.t. dx(z,z0) < 6 = dy (f(x), f(z0)) <e. ()

We say that f is continuous on X if it is continuous at each point.

Note:

(*) <= f(B(z0,9)) € B(f(x0),¢)
< B(x,0) C f~H(B(f(w0),¢))

11
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Notation: In a metric space, a set N is a neighbourhood of a point xq if 2o € N° (interior).

Theorem 7.2 (characterization of continuity at a point). If (X,dx),(Y,dy),f: X = Y,z € X are as above, then TFAE:
(i) f is continuous at xg
(i) for any neighbourhood N of f(zg) in (Y, dy), we have f~1(N) is a neighbourhood of z¢ in (X, dx)
(iii) if 2o = limy 00 Ty, in (X, dx) = f(z0) = lim, 00 f(zy) in (V,dy).
Proof. (i) = (ii) Given a neighbourhood of f(x¢), there exists ¢ > 0 for which B(f(z¢),e) C N. By assumption of continuity,
there is § > 0 s.t.

B(wo,0) “H(B(f(x0),¢))

cf
C f~X(N), from above.

Thus f~1(N) is a neighbourhood of z.

(i) = (i) = (iii) Given ¢ > 0, B(f(z0),¢) is a neighbourhood of f(x¢), so f~1(B(f(z0),€)) is a neighbourhood of x¢ and
hence there is § > 0 s.t. B(z,0) C f~Y(B(f(z0),¢)), which gives (i).

Now, if ¢ = lim, 00 &, in (X, dx) then there is ns in N s.t. if n < ng,x,, € B(xo,d). But then for n < ngs, we have

f@n) € f(B(x,0)) € B(f(x0),¢)
and hence f(zo) = lim,— 00 f(2n).
(iii) = (i) (contrapositive) If (i) fails, then there exists ¢ > 0 s.t. for any § > 0, B(x¢,d) ¢ f~1(B(f(z0),¢))-

Hence for each n € N we may find x,, € B(xq, %) \f~YHB(f(z0),¢)). Given e’ > 0, let n. satisfy n. < %, thus lim,,_, 00 T, = Zo.
However, each f(z,) ¢ B(f(x0),¢), so f(x) does not go to. O

8 2017-10-06

Corollary 8.1. A metric space is complete if whenever for any Cauchy sequence, we may find a converging subsequence.

Nested Intervals Theorem, Bolzano-Weierstrauss Theorem

Theorem 8.1. (£, [|-[|,) (1 <p < o0) is complete as a metric space.

Def: A normed space (V,]]|) is called a Banach space provided that V' is complete w.r.t. metric d(z,y) = ||z — yll.
(€p, [Il,) is a Banach space.

9 2017-10-16

Theorem 9.1. The space of continuous bounded functions under the uniform metric, (Cy(f),||||,.), is a Banach space.

Proof. (I) For x € X, (fn(2))52, is Cauchy and admits a limit, so this defines f : X — R. The hard part is showing that f is

n=1
continuous.
Next, show f is bounded, so f € Cp(X).
(II) limp— oo || f — frllo =0, ie. limp—oe fr, = f uniformly in C(X). O

9.1 CHARACTERIZATIONS OF COMPLETENESS
Def: If (X, d) is a metric space, @ # A C X, we let the diameter of A be given by

diam(A) = Z d(z,y) (may be co0)

z,y€A

12
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Proposition 9.1. If (X, d), A are as above then diam(A) = diam(A).

Proof. 1f z,y € A,e > 0, then there are /,y' in A s.t. d(z,2') < 5,d(y,y') < § (using meet set characterization of A). Then

d(z,y) < d(z,2") +d(@',y) + d(y', y)
5 + diam(A) + ;
= diam(A4) + e. (Assume diam(A) < o0).

Thus, since e > 0 is arbitrary, d(z,y) < diam(A) = diam(A) = sup, ,c 4 d(z,y) < diam(A4). Since A C A, diam(A) <

diam(A). O

Theorem 9.2 (Nested set characterization of completeness). Let (X, d) be a metric space. Then (X, d) is complete <
whenever we have closed sets,

e [N DF, DF3D -

e diamF,, 22> 0
then o, F,, # 9.

n=1

Proof. (=) For each n, choose x,, € F,,. Given € > 0, choose n. in N s.t. n > n. = diam(F,,) < . Now, if n,m > n. we
have

Tp € Fy CFy &y € By CF,, = d(zn, Zm) < diam(F),_) < ¢

so ()% is Cauchy, and has limit x = lim,,_,o, z,,. Since each F,,, = F,, (closed), and we have for n > m,x, € F,,z =
limy, o0 T, € Fy, for all m. Hence z € (_, F, (ie. # @).

(<=) Let (z,,)72; C X be Cauchy, let for n in N, F,, = {zx}x>n. Then each F,, is closed and F,, D F, 4 for each n. Further,
diam F,, = diam{x }r>n (last proposition). Given e > 0, there is ne in N so n,m > n. = d(zn, zm) < €. So for n > n., we
have diam{zy }x>n = supy, >, d(xr, 1) < €. O

10 2017-10-18

Continuing the proof that (Cy(f),[|-||.,) is a Banach space from last time:

Theorem 10.1. The space of continuous bounded functions under the uniform metric, (Cy(f), ||| ), is a Banach space.

Proof. (I) For v € X, (fn(2))s%; is Cauchy and admits a limit, so this defines f : X — R.
f is continuous: let x € X, and let € > 0. Choose n. € N so that

nom > ne = |fale) = @) < T and [fu = funlle < 5.

Choose § > 0 so that for z,y € X,
€
A(r,) < 6= |, (@) ~ fu. ()] < =

Then, given y € B(z, ¢), let n, € N so that n, > n. and
5
nzny = |fuly) = fY)I <
Then for n > n, > n. we have

(@) = f) < [f(@) = fac (@) + [ fac (@) = fac W) + [ fa (¥) = @)+ | fa(y) — f(y)]
13 g 13 g
< 1 + 1 + 1 + 1
= €.

13
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Also, f is bounded because

[f (@) < |f(2) = fo(@)| + | fn(2)]

flz) - (x)|+||fn||

o(1) +

(II) Show that this is actually the limit (i.e. lim, || f — fnllo, = 0).

Let ¢ > 0. Choose n. € N so that m,n > n. = |[|f;m — full < 5. Also, given x € X, choose n, > n. so that
n > ng = |fu(x) = f(x)] < 5. Then, for n > n., find m > n, > n. and observe that

1f (@) = fo(@)] < [f(2) = fan(@)] + | fm () = fu(2)]
< % + Hfm - anoo

=E.

<If
<

Example: Consider (£p, [|]|,,),1 <p < oco. Let €, = (0,...,0, 1 ,0,...) and let £, = {ex}r>n C Lp.
n-th place

e Each F, is closed (easy exercise)

o [N DIy D

o diam F, = 2 (easy computation) (Finite diameter is not sufficient for Nested set characterization)
Notice that (2, F,, = @.

Theorem 10.2 (abstract M-test). Let (V,]|-]|) be a normed vector space. Then (V,||-||) is a Banach space <= for every
()52, CV with Y07 lok]| = limy oo > p—y ||zk|| converging, has that Y ;2 | @, = lim, o0 Y1, @) converges in (V, |-||)
lie. V satisfies that “absolute convergence” = convergence.|

Proof. (=) Suppose > -, ||z || converges. Consider (3>°}_; k)52, C V. We have for m < n that

m
D
k=1

n

> llzel

k=m+1

———
partial tail of converging series in R

and hence (3, _; x)22; is Cauchy in (V,||-||), and thus converges.

(«<=) Suppose (2,)52, is a Cauchy seq in (V,||-]|). Let ny in N be so m,n > ny = ||@m — z,|| < 1, and, inductively, choose
ng+1 in N st ngeq > ng and myn > ngy; = ||z, — 2n| < 2%

Let yo = Tnyy Yj = Tnjqr — Loy, JjE N

Then, each ||y;|| = Hxnﬁl xn]H < g7, as g1 > nj > n, S0

o0 o0 1
Sl = Il + 3 555
i=0 j=1

which converges. (x)

14



Fall 2017 Real Analysis Course Notes 10 2017-10-18

Now
k—1
Tpy = Ty + Z(gcnj+1 —Tp;)
j=1
k—1
=Y+ Y
j=1
oo
LN Yo + Z y; (by assumption and (x))
j=1
In other words, (zy, )52, converges, hence (x,)52, converges as well. O

Application: a continuous nowhere differentiable function on R.

Facts: Cy(R) is complete; M-test.
Construction: Let ¢ : R — [0, 1]

) = t—2k 2k <t <2k+1
AT ok r2 -t k1<t <2h+2

Picture: sawtooth function with zeros at ..., —4,—-2,0,2,4,....
Then

(i) ¢ is continuous and bounded
(i) ¢ is 2-periodic, ie. p(t +2) = ¢(t) for t € R
(ili) ¢(2k) =0,p(2k+1)=1for k € Z
(iv) it k <s,t <k+1 (k€Z), then
|o(s) — ()] — s — 1|
Let for t € R

F) =Y (HFp(a")
k=

1

However, note that each ¢(4%) € Cy(R), ‘<p(4k)HOO =1, so by the M-test, f € C,(R). Fix t € R. We show that f cannot be
differentiable at ¢. Let £, = |4™t] (m € N) so

b <A™t < by, +1

m 777/1_

15
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We compute

|f(pm) - f(Qm)|

=1 lim > (D e pm) — 0(4"qm)]
k=1
=] lim S ()4 ) — (45 (b + 1))
k=1
k k—m k—m . . ..
=i 3D ) = 0 1)y ) (-perodici)
m—1
(key step) > 371 3 B[ (45 0,) — (457 (£, + 1))
k=1 =4k=m_ by (iv)
R m—1
S
k=1
m—1
=B =D 3
k=1
— 4}n [2 3""73""+1]
— (2

Since |[py — ¢m| = 4%,1, we have
f(pm) — f(gm) N 3" +1
Pm — qm o 2

- )

(¢ € Z), then t = p,, for m > my and hence for m > my,

Ift=

4m0
’f )‘ S 3"l
t—qm - 2
while lim,,, o ¢m = t, so f/(t) does not exist.
fom) = flam) _ [f(om) = FOI+1f() = f(am)]
Pm — 4m B |pm - le

_ m) = O] 150 = flam)
- |Pm — 1 [t — qml

t) f(rm)l > 3m+1

[t—7m |

Hence, for some r,, € {pm, qm},
We have |f(ti7f('“m)\ > 3L while 7, — 1.

11 2017-10-20

Corollary 11.1. (¢, ||-||.,) is a Banach space.

Proof. lo, = Cp(N) with usual |- | metric on N. If f : N — R is bounded, U C R open, then f~!
subsets of N are open) = f is continuous.
If (2n)721 € loo, define f:N =R, f(n) =z, f € Co(N), [[fllo = I(zn)iZi ]l

16

(U) € P(N) is open (all
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2 1
Eg. (C10, 2L, 11ll,), I1£ll, = (Jo [fP)?, 1 <p < oo
NOT a Banach space!

Let
1 0<t<i
fat)=qn(G+5 1) 5<t<s+y
0 3+ <t
Then for m < n € N,
2 1
= Fully = (182 = £}
1 1,1 st ) 1
2 2'm /Y P
:</ ‘fn_fm‘p""/l |fn_fm|+/1 1 fn_fmp>
0 1 1,1
| E— 2 27Tm
0 T N
1
< —-
mpe
Hence (fn)pZ, is Cauchy in (C[0,2], |-,

Consider

X[o 1 is bounded, piecewise continuous, so Riemann integrable.
2
2 1
_ py\ L
R I A
21, 0 nd
— lim .fn X 1 0.
n—o0 [0,5] »
If g € C[0,1] s.t. limyso0 fn — gll,,, then ||g — X d|| = 0.
21,
Using Riemann integration theory,
0 1 0<t<j
=0 Lt

Then limt g does not exist!

1
2

11.1 COMPLETENESS OF METRIC SPACES

(X, d) metric space.
Remark: |d(z, z) — d(y, 2)| < d(z,y).

If © = limy, 00 Tny ¥ = My 00 yp in (X, d), then lim, o0 d(2zy, yn) = d(z,y). (See solution to A3Q2).

Def: (X,dx), (Y, dy) metric spaces. i : X — Y is an isometry if dy (i(x),i(y)) = dx(z,y)Vz,y € X.
Notes: An isometry is injective. Consider i : X —i(X) CY = i~ :i(X) — X isometry.
Theorem 11.1. (X, d) metric space.
i) Existence of completion: there exists a metric space (X,d) s.t.
a) (X,d) is complete
b) 3 isometry i: X — X
c) i(X) = X;ie. i(X) is dense in X

17
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ii) Uniqueness up to isometry: if (X,d) is a metric space with map i : X — X s.t. (X,d),i satisfy (a),(b),(c), then 3 a
surjective isometry ¢ : X — X s.t. poi =1.

Proof. 1. Fixzg € X. Foru e X, let f, : X = R, f,(z) = d(z,u) — d(z, zo)
= f, is continuous and |f,(x)| < d(u,zg)
= || full oo =SUPzex |fn(x)| < d(u,x0) < 00 = f, is bounded
= fu € Ch(X).
For u,v e X,z € X,
[ful@) = fo(@)] = |d(,u) — d(z,v)] < d(u,v).

Thus || fu — follo, < d(u,v). Finally,

| fu(u) = fo(u)| = |d(u, u) — d(u, zo) — d(u,v) + d(u, zo)|
=d(u,v).

Thus || fu = follog = d(u,v) = [|fu = folloo = d(u,v).

Define 7 : X — Cy(X), 7(u) = fu, 7 isometry.

Let X = 7(X) = {fu:u€ X} CCy(X).

By A3Q2(a), (X,d) is complete, where d is relativized from the metric on Cp,(X).

2. Let g =701 ' : 7(X) = 7(X). @o an isometry = uniformly continuous. Hence it admits an extension ¢ = % : X =
i(X) = X =71(X).
Verify ¢ is an isometry:

Ifz,5e X, let & =limy, oo T(2n), ¥ = limy o0 7(Yn)s TnyYn € X. Then

o(@) = lim ¢o(t(xy)) = lim 7(xy,).

n—oo n—oo

Hence

d(p(T),0(©)) = lim d(7(xn),7(yn))

n—oo

= nlin;o d(Tn, Yn)

= lim d(t(z,),T(ya)) = d(Z, 7).

n—o0

= ¢ is an isometry. ¢ oT = 7 comes for free.

12 2017-10-23

Assignment discussion — the completion vs A4,Q1:
Suppose (V, [|-[|) is a non-complete normed vector space, eg. (C[0,2], ||[[,,) (1 < p < oo). Consider the map
7:V = Cp(V)

T(v) € Cp(V), 7(v)(z) = |lz — yll — ||z

We saw that 7 is an isometry, hence we let

V=1(V) C Cy(V)

complete =

Problem: 7 is not linear, 7(V') not evidently a subspace of Cy(V). -

A4, Q1 shows that an addition and a scalar multiplication may be imposed on V = 7(V) which makes it a Banach (complete
normed vector) space. These two operations are not the same as addition and scalar multiplication in Cy(V'). (The only linear
property that 7 enjoys seems to be that it takes 0 to 0.)

18
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12.1 COMPACTNESS

Let (X, d) be a metric space, and K C X. We say that K is compact if given a family of open sets {U; }ies for which

K C U U; — we say {U,};es is an “open cover”
iel
there is a finite subfamily {U;,,..., U, } such that

n
K C U Ui, — we say {U; }icr admits a “finite subcover” .
k=1

If X = K itself is compact, we will call (X, d) a compact metric space.

Remark: If K C X is compact, the relativized metric space (K, dk) is a compact metric space.

Proposition 12.1. Let (X, d) be a metric space and K C X. If K is compact, then it must be closed.

Proof. Let us suppose, for sake of contradiction that there is 2 € K \ K. Then for n in N,

B(z,1)NK #2 = Blz,2|nK #2. (%)
Further, N%%, Blz, 2] = {z}. Let U, = X \ B[z, =], which is open.
We have that

Up=|J&X\B[z,2)) =X\ () Blz, 2] = X \ {z} D K.
n=1 n=1 n=1
But, for any finite m we have
UUn=X\(Blz.t]=X\Blz, L] 2 K
n=1 n=1
by (%). Hence if K \ K # @, K cannot be compact. So we are done. O

Proposition 12.2. Let (X, d) be a compact metric space and C' C X is closed. Then C' is compact.

Proof. Suppose {U, };c1 is an open cover of C. Then {U,;},c; U{X \ C} is an open cover of X. Hence X admits finite subcover
{Uiy,..., Ui, }U{X \ C}, hence, {Uj,,...,U;, } is a finite subcover of C. O

Theorem 12.1 (continuous image of compact is compact). Let (X, dx) be a compact metric space, (Y, dy ) be a metric space,
and f: X — Y be continuous. Then f(X) = {f(z) : v € X} is compact.

Proof. Let {V;}icr be an open cover of f(X). Then U; = f~1(V;) is open, and {U;};cs is an open cover of X. Hence there is
a finite subcover, X C U;_, U;, so f(X) C Up_, f(Ui,) = Ui—; Vi, so {Viy,..., Vi, } is a finite subcover of f(X). O

“_r1s

Corollary 12.1 (Extreme Value Theorem). If (X,d) is a compact metric space, f : X — R is continuous, then there are
Lminy Lmax S X fOI‘ Wthh
f(@min) < f(2) < f(#max) Vo € X.

Proof. We have f(X) C R is compact. Hence f(X) is closed. Also {(—n,n)}32; (open intervals), then f(X) C R =
U~ (—n,n) admits a finite subcover, {(—1,1),...,(—n,n)} and hence f(X) C (—n,n). Thus we have inf(f(X)),sup(f(X))
exist.

Since f(X) is closed we have
inf(f(X)),sup(f(X)) € f(X)
(use meet-set of closure). Let Zmin, Tmax be 80 f(zmin) = inf(f (X)), f(Xmax) = sup(f(X)). O

— Assignment line —

19
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Theorem 12.2 (finite intersection property). Let (X,d) be a metric space. Then (X,d) is compact <= for any family
{Fi}ier of closed subsets of X for which (;_, F;, # &, {i1,...,in} finite in I, we must have (., F; # @.

Proof. (=) (contrapositive) Let us suppose that {F}};c; is a family of closed subsets with (., F; = @. Then if U; = X \ F,

we have that {U;};cr is an open cover (De Morgan’s law) and hence admits finite subcover {U;,,...,U; }. Again, by
DeMorgan’s law, (;_, Fi, = @. Hence we are done.
(«<=) Very similar, interchange roles of U;s and F; = X \ U;. O

Example: Let X = B[0,1] in ¢, (1 <p < c0).
Let e, = (0,...,0, 1 ,0,...) and let F,, = {eg}r>n (seen before on Oct 18).

n-th place

Each F,, is closed. Also

8
3
I
8

3
Il
-

DL
.
\
!
o
Q

m

ﬁ

3
Il
_

Conclusion: (B[0,1],d,) (dp(z,y) = |lz — yl[,) is not compact.

13 2017-10-25

Def: Let (X, d) be a metric space. Then we say it is

e bounded if there are g in X, and R > 0 such that X C Blxg, R] (of course “=" holds) (equivalently, for any =z € X,
there is R, > 0 such that X C B[z, R,]; or, equivalently, diam(X) < o)

e totally bounded if, for any € > 0, there are z1,...,z, € X such that X C J;_, Blzy,¢]

Totally bounded = bounded. |with ¢ > 0, z1,...,z, in defn, check that | J;_, Blak,e] C Blx1, e + maxp—a ., d(z1, z))]|

Example: (bounded #= totally bounded)
In¢,(1<p<o0),e,=(0,...,0, 1 ,0,...), F,={ex}tr>n C ¥p,
n-th place
25 1 <p<oo

1 otherwise

F, int, F,, C B[0,1] C Ble, 2] so F,, is bounded. But n # m, d(ep, em) = { =: R.

If 0 < e < 3R, we see that F,, Z |J,_, Bley,ée] for any n.

Theorem 13.1 (Characterizations of compact metric spaces). Let (X, d) be a metric space. TFAE:
(i) (X,d) is compact,
(ii) any sequence ()52 ; C X admits a subsequence which converges in X

(iii) (X,d) is complete and totally bounded

Proof. (i) = (ii): Let F, = {xx}}2,. Then each F, is closed, and F} D F, D ---, so if ny < ng < ---n,y,, then
Nj=1 Frn = Fy,, # @. Thus, by finite intersection property, we have that (\,_, F, # @. Let x € (,Z, Fy.
Now let

ny = min{k : z € B(x,1)} (exists by meet-set closure definition)

and, inductively,
Nmt1 = min{k : k > n,, and z € B(x, #ﬂ)}

Then, as is easy to check, lim,,_,o xp,, = 2.
(il) = (iii): If (z,)52; C X is Cauchy, it admits a converging subsequence (by assumption), and hence itself converges

20
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(earlier proposition). Thus (X, d) is complete.
Let us suppose that (X, d) is not totally bounded.
Thus, there exists € > 0 so no finite collection of closed e-balls covers X. Let

x1 € X\ Blz1,¢€],...,2nt1 € X\ U Blxy, €] (always possible by assumption).
k=1

Thus d(zp, Tm) > € for n # m. Thus, this sequence (z,,)22; admits no Cauchy subsequences, hence no subsequences which
converge, violating assumption (ii). Thus (ii) = (X, d) is totally bounded.
(iii) = (ii): We first use total boundedness. Given n in N, there exist yn1, ..., Ynm, € X such that the closed balls

Bnl = B[ynla %]a sy Bnmn = B[ynmna %]
satisfy that X C |J;'", Bnk. Let

e B be a ball from Byy,..., By, such that

{n € N:z, € B1}| =Ry (pigeonhole principle)

o
e By be a ball from Byj, ..., Bgm, such that

k
|{n€N:xn€ﬂBj}|:No

j=1
1 1
(we’ve covered X by 1-balls, By by §—balls7 then By N By covered by g—balls, o)

Now we use completeness. Let F,, = ﬂzzl By, so each F;, is closed.

e ' DI DF32D -

o diam(F,) < diam(B,) = 2 "> 0
Thus, by nested sets theorem, ()7, F, # &.
Let ny = min{k € N : z;, € Fy}, inductively, n,,+1 = min{k € N: k > n,, and z € F}}.

n—oo

Then, if z € ;" Fn, d(z,z,) < diam(F,,) < diam(B,,) = 2 225 0 so © = limy,_,00 Zn, - O

14 2017-10-27

Office hours:
Mon 2:30 — 4:30
Tue 2 — 3:30

Proof. Continuing theorem from last time:
So far we did (i) = (ii) = (iii) = (ii)
~— ~—~ ~—~
F.I.P routine harder, nested sets thm
(ii) = (i): Let {U;}ics1 be an open cover of X.
(LN) There exists > 0 s.t. for any = in X there exists ¢ in I so B(z,r) C U;.
(This number r is sometimes called the “Lebesgue number” of the covering; its existence is based on (ii).)

Suppose (LN) fails. Then for choice of r = %, there exists =, in X s.t. B(x,, %) Z U; for all 4 in 1.

Our assumption is that (z,)5%; € X admits a subsequence (z,, )52, such that ¢ = limy_,o0 x5, exists.
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Then z¢ € Uy, for some ig, so there is ¢ > 0 such that B(xzg,e) C U;,. Now, there is k. in N so k > k. = x,,, € B(xo, 35).
Hence, let us choose k > k. and i < 5. Thus, if x € B(z,,, nl—k), we have

1 €
d(z,x0) < d(z,zp,) + d(Xn,,x0) < — + 3 <e

k
and hence B(zy,,, ﬁ) C B(xg,€) C U;,, contradicting the choice of the elements x,.
Hence, we must conclude that (LN) holds.
We saw in (ii) = (iii) above, that our assumption gives total boundedness of (X, d). Hence there are yi, ...,y such that
X CUjL, Blyj, 51 € Uj~, B(y;, 7). Now, for each j = 1,...,m, (LN) tells us that there is i; € I so B(y;,7) C Uy,
Thus X C UjL, B(y;,7) € UjZ, Uiy, so {Uiy,..., Uy, } is a finite subcover.
Remark: On R", norms ||-|| » (1 < p < o00) are equivalent, and from A2, each gives the same open sets, and hence the same
compact sets.

Corollary 14.1.

(i) (Bolzano-Weierstrauss Theorem for R™)
If (™))%, C [~ R, R]® = Bu[0, R], then it admits a converging subsequence.

(ii) (Heine-Borel Theorem)
A subset K C R™ is compact <= K is closed & K is bounded (with respect to any ||| )-

Proof. (i) We consider, first (x(ln))oo C [-R, R] C R. By Bolzano-Weierstrauss for R, this admits converging subsequence

n=1
(a;gnk))fle. Then (a:g"));’le C [-R, R] C R admits a converging subsequence (xénk))%o:l.

(n) iterations, we get a subsequence of (2(™)2; which converges (R™, ||| .)-

Etc. Hence, after finitely many

(ii) If K is compact, then K is closed by a result at the beginning of the section, and totally bounded by last theorem,
hence bounded. Conversely, if K is closed and bounded, K C [—-R, R]™ for some R > 0. Let us consider a sequence
(z(M)2e | C K. First, ((™)22 | admits a converging subsequence, by (i). Since K is closed, the limit of the subsequence
isin K.

O
Example: P = [[;7,{0, 5z} C 1 is compact in (¢4, ||-|,).
First soln: The Cantor set C' is closed and bounded in R, so thus compact. And there is a continuous function f : C — /4
with f(C) = P (A4,Q3), so P is compact. [In fact f is a bijection from C to P so f~!: P — C is also continuous.|

Second soln: P is closed (A3). Hence the relativised metric space (P,dp) is complete. Let us show total boundedness.

Let ¢ > 0, and n be so 5 < e. For (by,...,by) € {0,1}", let zp, b, = Spey Zex € P. If b= (b1, bo,...) € {0,1}", then

Tp =Y pey Ley, € P (generic element of P).
Then for b = (by,be,...) as above,

o0 o0

1 1 1
[EEET P ok Ok < > ok = gn =€
k=n+1 k=n+1

Thus, P C U, p.)e(0.13n Bloi. b, €] O
— MIDTERM CUTOFF -

15 2017-10-30

Midterm: Wed evening
See info sheet on website
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Office hours:
—2:30 - 4:30
—1:30 - 3:30

A5 - will be posted Friday

Theorem 15.1 (sequential characterization of uniform continuity). Let (X, dx) and (Y, dy) be metric spaces, f: X — Y.
Then

n—oo

f is uniformly continuous <= whenever dx (z,,yn) — 0, Tn,yn € X,
we must have dy (f (), f(yn)) ——— 0.

Proof. (=) Given € > 0, there is § > 0 such that dx(z,y) < ¢ (z,y in X) = dy(f(z), f(y)) < e. Now suppose
()22, (Yn)22 € X such that lim,_,oc dx (@y, yn) = 0. Then there is n. in N such that

n > ne :>dX($nayn) <4

= dy (f(zn), f(yn)) <€

Le. limy oo dy (f(zn), f(yn)) =
(«<=) (contrapositive) Suppose f is not uniformly continuous, so there ex1sts € > 0 such that for all 6 > O there are z,y

in X with dx(z,y) < & but dy(f(z), f(y)) > e. For each choice § = %, let z,,y, in X so dx(zn,yn) < = for which

dy(f(.l?n), f(yn)) > E.
Plainly, lim,, o dx (zn, yn) = 0 while lim,,_, o dy (f (), f(yn)) # 0 (if the limit exists).

Ex: Let f(z) =22 on R. Let z, =n, y, =n+ . Then |z, — y,| = M—°°> 0, while | f(zn) — f(yn)| =2+ 5 2750,
Hence f is not uniformly continuous. O

Theorem 15.2 (continuous on compact is uniformly continuous). Let (X,dx), (Y,dy) be metric spaces, with (X,dx)
compact, and f: X — Y continuous. Then f is uniformly continuous.

Proof. Let us suppose not. Then thereise > 0 and (z,,)5%;, (yn)22; € X such that dx (z,,, ¥n) —— 0 while dy (f (), f(yn)) >

e. Let (2, )72, be a converging subsequence. Then let (y,, )52, be a sequence in X, hence admits converging subsequence
(ynk[ )72 ;- Then if & = limy_ 00 &y, = limy_, oo Tny, then

dx (l‘, ym%) <dx (.13, ‘Tnkz) +dx (xnke ; y’ﬂ/kz)

l— 00
0

so « = limg_,o0 Yn,,- Then we have f@) =limy— 0o f(ynk_é ), by continuity, so
0= dy (f(x), f(2)) = I dy (F(zm,, ), F(o,,)
contradicts (x). Thus, we conclude that f is uniformly continuous. O
Definition: A map f: X - Y ((X,dx),(Y,dy)) is called Lipschitz if there is L > 0 such that
dy (f(z), f(y)) < Ldx(z,y) for all z,y € X.

Notice that
dy (f(z), f(y))

=inf{L > 0: (Lip) is satisfied
z,yeX, r#y dX (.’IJ, y) { ( ) }

so there exists a minimum L satisfying (Lip). We call this the “Lipschitz constant”.
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exercise

Remark: Lipschitz === uniform continuity = continuity
Lipschitz 73% uniform continuity ¢= continuity

Theorem 15.3. Any two norms on R" are equivalent, i.e. if |||, || - || on R™ satisfy ||| ~ || - ||, i-e., there are m, M > 0 for
which m/z|| < ||z < M|lz[.

Proof. Let ||| be a norm on R™. We will see that [|-|| = |||, (/lz[l, = >"j_, [=;]). Since ~ is an equivalence relation, we get
-l = M-l so (1l = I-1I-
Let {e1,...,en} be the standard basis, so if x € R", z = Z?:l xjej. Then

n n
ol =[Xaes| £ Dlasllesl < Mlelly where M = s sl
= e

properties of norm Jj=1

Notice, then, for z,y in R™ we have

!l = Tl < e —yll < Mllz —yll,

~~—
standard < (shown before completeness of Cy(X))

so ||-|| : R™ — R is Lipschitz with respect to di(z,y) = ||z — y||; and thus continuous.
Let S1 ={x € R" : ||z]|; = 1} = B1[0,1] \ B1(0,1) so S; is closed in B;[0,1]. Hence by Heine-Borel Theorem, it is compact.
———

CB1[0,1]
Hence, by Extreme Value Theorem, there is x,;, in S7 such that

[€min[| = inf{]|z] : = € S}

Let m = ||Zmin|| > 0 (88 Zmin # 0, since ||Zmin||; =1 # 0).
Now, if z € R™ \ {0}, then

< 2| = mllzlly <zl (§)
I,
€5,
Then () and (f) show that ||-|| = ||-||;- O
Corollary 15.1. If ||-|| is a norm on R™, || - || on R™ and A : R® — R™ is linear. Then A is Lipschitz from (R",|-||) to

(R™, ]| - |I), and hence continuous.

Proof. Let {e1,...,e,} be the standard basis of R", {ei,..., e} be the standard basis of R™. Then there is a matrix [a;;]
such that Ae; = > | a;je;.
Then for x = 377 zje; in R™ we have

Ax = Zn: x;Ae;

Jj=1

Zaijxi e; € R™
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SO
Azl <> 1> agaylllell, M= max le]
=1 j=1 e
<MD agllagl, Al = o, max o ai
j=1i=1 Tt I
= MY Jayllz|
i=1 j=1
< MY ALzl
i=1
=M|z|, <M
lllly < M| O
16 2017-11-01
Proposition 16.1. Let (V,|[|,,), (W, ||-|l;/) be normed linear spaces, A : V' — W be linear. Then TFAE:
1. A is continuous
2. ||A]| ;= sup{|| Azl : x € By[0,1] < oo
closed ball, center 0 in V
3. A is Lipschitz map with Lipschitz constant || A||
Moreover, in the case of (ii) (hence (iii)), above, |[Az|,, < [|A|l||z|,, for any = in V.
Proof. (i) = (ii) A is continuous at 0 in V. Thus, letting ¢ = 1, there is § > 0 s.t. A(By(0,4)) C Bw (0, 1).
Now, if z € By[0,1], then gx € By (0,9), so
2 2 2
|Az|,, = Z|[ACC2)|] < 31=% <00
LA N 1) )
€B(0.1)]|yy
s0 Al = sup,ep, o1l Azl < § < o0
(i) = (iii) If # € V' \ {0}, so Wm € By[0,1] and
1
*) Azl = =l || A e <l Alll=lly-
v W
<lAll
Clearly, (%) holds for z =0 in V. Hence if z,y € V,
Az — Aylly, = [|A(z = y)llw < Az = ylly-
Thus A is Lipschitz and “Moreover...” holds. Furthermore, by (%),
zeV\{0} ||$HV z#y in V llz — y||V
which is the definition of the Lipschitz constant.
O

(iii) = (i) Obvious.
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Remark: Let B(V,W) ={A:V — W | A is linear and continuous}. Notice that (ii) above shows that A must be bounded
on By [0,1] and we call A a “bounded linear operator”.

B(V,W) is a R-vector space (pointwise addition and scalar multiplication) and || - || is a norm on B(V, W), called “bounded
operator norm”. (Exercise.)

Question: Is continuity automatic for linear operators?
Example: Consider the vector space C[0, 1] of continuous R-valued functions on [0, 1]. Let

©:C[0,1] = R, ¢(f) = f(3) (evaluation at 3).
Then ¢ is linear: let f,g € C[0,1], « € R, then
p(f +ag) = f(3) +ag(3)
= o(f) + ap(g)
(i) Consider (C[0,1],]|||,,)- Then
(Nl =1£(3)] < max [f(t)] = [ fll

te[0,1]

Thus [J¢]] <1 (easy to show that [l¢]| = 1), i.e., € B((C[0,1], [ ][), R).
(ii) Now consider (C[0, 1], [|-[|,) (1 <p < o0). Let

0 ifr<lo L

o T E ) - <ty

" (I L) ifl<t<iy b
0 t>1+ 45

[triangular spike at [§ — —%, 3 + 3 with peak at § having value n.] Notice

o(fn) = fu(3) =

while
1 \7»
i, = ([ 12)
1
l_;'_# P
27T .2p
_ p
/;_# -
2o o<y
R g
< / nP
- 11 ~~~
2  np2p constant
2 \7 27
P P
_ p_“ -
Thus
le(fa)l — n 0 nooo
=71 =1 Q.
Ifall, 20 2%
n
Hence

¢ & B((C[0, 1], [I-[1,), R)-

Example: (Axiom of choice) If (V,||-||) is an infinite dimensional normed vector space, then it admits an infinite linearly
independent family {v,}22 ;. There exists a basis {w; }ier s.t. {v,}22; C {w; bier.
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Define f: V — R
f<wi>:{|vn| o=

0 otherwise

and extend uniquely to a linear operator on V.
Check that f ¢ B(V,R).
Why isn’t B[0,1] in (C[0, 1], ||-||.,) compact?

Reason: existence of subsequence with no converging subsequence [similar holds on (£, [-[[,)]-

Picture: [triangle spike to height f,(t) =1 on [-1=, 1], 0 elsewhere.]

n+l’n

Calculate that if m # n, || fn — fm| = 1. Conclude that (f,);2,; C B[0, 1] admits no converging subsequence.

17 2017-11-03

Theorem 17.1 (Banach’s Contraction Mapping Theorem). Let (X, d) be a complete metric space and let I': X — X be a

strict contraction, i.e., there is 0 < ¢ < 1 s.t. d(I'(z),I'(y)) < cd(x,y) for z,y in X (T is ¢-Lipschitz). Then

(i) there is a unique fixed point xgy for I, i.e. T'(zfx) = Tfix,

(ii) given any zo in X, if we define a sequence by =, = I'(x,,_1),n € N, then it satisfies

el

d(mny xﬁx) S 16

and hence lim,,_, o T,, = Tgax.

d(xo,T'(20))

Proof. Let zy € X. We define (2,)22; C X as in (ii), above. We note that d(z1,z2) = d(T'(x0),I'(z1)) < cd(xo,21) =

cd(zo, T'(zg)).
Now, if

(*)  d(@n, Tnt1) < c"d(z0,T'(20)),

then

d(#n41, Tny2) = d(D(@n), D(@ng1)) < cd(@n, 2ng1) < (o, T(w0))

so (%) holds generally. Thus, if m < n in N we have

n—1
d(@pm,wn) <Y d(wj,2501)

Jj=m

n—1
< Z cd(xo, I (0)), by (%)

m

< Z dd(xo,T(20)), by (x) = 1—

It follows that (x,)52 is Cauchy, and hence zgx = limy, o0 T, exists. Then

Tax = lim z, = lim I'(x =
x n—oo ¥ n—o00 ( n) ~—~—~
T" Lipschitz => continuous

Hence zgy is a fixed point. If yg, is any other fixed point then

d(wsix, ysix) = d(T(wsix), T'(ysix))
S Cd(xﬁxa yﬁx)

I( lim z,)

n—oo

< d(xﬁxayﬁx)a if d(xﬁxvyﬁx) >0

27
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so we must have d(zgyx, yax) = 0, i.e. Zfix = Yax. Thus (i) holds.
Also we have for m, n, as above,
m TN

(@, Tn) < %d(wo,I‘(xo)) — d(zn, zix) = lim d(zm, ) < lLd(xo,r(xo))

—c n—o0 —c
so (ii) holds. ]

Application: Some differentiable equations

Let F : [a,b] x R — R be continuous, and yy € R. We consider the following initial value problem:
Want f € Cla,b], with f(a) = yo and f'(t) = F(¢t, f(t)) (IVP).
—_—— —_—

initial value differential equation
We use the Fundamental Theorem of Calculus to convert this to an integral equation:

Want f € Cla, ], f(t) = yo + [, F(s, ((s)))ds (IE).

Theorem 17.2 (Picard-Lindelof Theorem). Let F,yo be as above and suppose that F' is Lipschitz in the second variable: for
all t € [a,b],y,z € R,
|F(t,y) — F(t,z)] < Ly — z|, for some L > 0.

Then (IVP) admits a unique solution, fs in Cla, b].
Proof. (I) Let us assume that (b —a)L < 1. Define I" : C[a, b] — C|a, b] by, for ¢ € [a, b],
¢

L(f)(t) =yo +/ F(s, f(s))ds.

a

Then for f,g € Cla,b], and ¢ € [a,b], then
IT(f) (@) —T(g) ()| = |/ [F(s, f(s)) — F(s,g(s))]ds]|

g/ﬁF@J@»—F@gw»ws
¢ <LIf()—g(s)]

SL/Wﬂ@—mwws

<Nf=9lleo
t

<Lif =gl [ 1ds

a

=LIf =gl —a) < (b—a)L|f — gl

In summary,
IT(f) =T (9l = tSpr]HF(f)(t) =T(g)@)|l
€la,
< (b—a)L|[f = gllw-
———
<1
Hence, by the Contraction Mapping Theorem, applied to I" on (Cla, b], ||-||,), there is a unique fio1 such that I'(fso1) = fsol-

(IT) Let
a=a1 < ay <by<bs<by<---<a,<b,_1<b,=>

so that (bj —a;)L <1forj=1,...,n.
Notice that [aj,b;] N [a;+1,bj+1] = [a;,bj+1] has non-empty interior.
Let f1 € Cla1,b1] be the unique solution to (IVP) with fi(a) = yo, by (I).
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Then, let f5 in Clag, bo] satisfy (IVP) with fa(as) = fi(az). Then, let f3 in Clas, b3 satisfy (IVP) with f3(a3) = f2(as). Etc.
Let f : [a,b] — R be given by
f(t) = fj(t) for t € [aj,bj],j =1,...,n.

Check that this is well-defined. Its value is uniquely determined on each [a;41,b;], thanks to uniqueness in (I). O
18 2017-11-06
Example: (IVP) Want f € C[0,1] s.t.
We convert to .
(IE) f(t) =1 +/ sf(s)ds.
0

This fits into Picard-Lindelof Theorem. Let F'(t,y) = ty, so f(t) =1+ fot F(s, f(s))ds with |F(t,y) — F(t,2)| = |t| |ly—z| <
~—
<1

ly — z|. (Case (II) of Picard-Lindelof.)
However, let T': C[0,1] — C[0,1] by, for t € [0,1],

NGO 1+/0 sf(s)ds.

Let us see that T, itself, is a strict contraction. Let f,g € C[0,1],t € [0, 1],

(@) = T(g)B)] < /O s|f(s) —g(s)|ds

SHf_gHoo

t
< [ sdslf - gl
0

t2
= S gl
~~

(NI

N | A

<

1f = 9l

(IT() =Tl < =11F — gll.0)

Hence, contraction mapping theorem tells us that I has a unique fixed point, ie (IE) and (IVP) have a unique solution, fso.
Furthermore, if we choose fy € C[0,1] and let f, = T'(f,-1) (n € N) then

&
2o = Tl

2

”fsol - fn”oo <

{

on—1

We can compute fsor.
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Let fo(t) =0 (constant zero).

filt) =T (fo)(t) =1 +/0 s0ds =1

ﬁ@=NhWFﬂ+Aﬂw:1+%

t t2 t2 t4
fal) =T = 1+ [ (14 Srds =14 5+ 1
0
(Use induction to check)
t2 t4 t2(n71) n t?(k?*l)
() =1 I e
fn(t) + = +4 2+ +[2(n_1)][2(n_2)}...2 ;Qk_l(k‘—l)!
Thus, at any ¢ in [0, 1],
n t2(k 1) o p2(k-1)
Joot = lggoz 2k 1 7};2k_1(k—1)!'

Furthermore, for each n,

[l fsol *anoo = max |feo1(t) — fu(t)]

te[0,1)
< 1
— on—1 0 71—\(0) T oon—1°
=1 o)

Question: Suppose we only knew that
d(I'(z),T'(y)) < d(z,y) for x #y in X.

(“proper contraction” instead of “strict contraction”)
Does I' necessarily admit a fixed point?

Answer #1: No.
Example: On X = [1,00) C R, let I'(z) = x4+ 1. If # < y, we have there is * < ¢, < y such that

1
D) =Tyl = M)l =yl = [1 = 5—|lz =yl < |z —yl.

z,Y

Notice: if I'(z) = = we’d have z = x + - = 0 = 1. Hence I' admits no fixed point in [1,c0).

Answer #2: Yes, provided we limit (X, d).

Theorem 18.1 (Edelstein). Let (X, d) be compact, and I' : X — X satisfy d(I'(z),I'(y)) < d(z,y) for x # y in X. Then

(i) I’ admits a unique fixed point zgy, and

(i) if zp € X, and z,, = T'(zp—1) (n € N), then zgx = lim,,— 00 Ty

Proof. (i) Let f: X — R, f(z) = d(z,T'(z)). Since T is continuous, f is continuous. [Check that f is 2-Lipschitz.|

Hence, by EVT, there is iy in X s0 f(2min) = min f(X). Suppose Zmin # I'(Zmin), then

f(F(Imin)) = d(F(Imin)a I'o I‘l(l'min))
< d(xminar(xmin)) = f(xmin)
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violating choice of . Hence Zmin = I'(Zmin), SO Write Zmin = Zax.
If, also, y = I'(y) in X, with y # x4y, then

d(y, zrix) = d(T'(y), I'(z6x)) < d(y, 1x)

which is absurd.

(ii) Let zp € X, (z,)52; be as above. Notice that
0 < d(xfix, Tnt1) = d(T(xgx), T'(20)) < d(zgx, 20)
so L = limy, o0 d(2x, Tn) exists (decreasing, bounded sequence in R).
Consider any converging subsequence (%, )7 of (z,,)0y, with = limy_,o0 Ty, . Then d(zgx, ) = limy_ o0 d(Tax, Tn,,) =

L.
If & # xgy, then

L = lim d(xgx, Tny+1) = lim d(xax, T(2n,))
k—oo k—oo

=d(zax, ['(2)) < d(zfix,x) = L

which is absurd. Hence the sequence (z,,)52 ; has that xgy is the only possible limit of a subsequence. Thus lim,,—,cc p, = Zfix
(check!). O

19 2017-11-08

Office hours:
Today 2:30-3:30
Tomorrow  2:30-4
Friday 2:30-3:30

19.1 BAIRE CATEGORY THEOREM
Definition: Let (X, d) be a metric space.

(i) Asubset N C X is called nowhere dense if (N)° = & (ie. the interior of the closure of N is the empty set). [Equivalently,
for any © € N,e > 0, B(x,¢) \ N # 2.

(ii) A set S € X will be called meager (or is 1st category) if S is a countable union of nowhere dense sets: i.e.

o0
S = U N, each (N,)° = @.

n=1
(ii”) S C X is non-meager (or is 2nd category) provided that it is not meager.

(iii) A set R C X is residual if X \ R is meager.
Remarks:

nowhere dense =—> meager
residual = non-meager (provided (X, d) is complete;

consequence of B.C.T, Baire Category Theorem)

If (X, d) is complete, we think of meager = “small”, non-meager = “not small” <= residual.
Examples:

(i) If zp € X, {x0} is nowhere dense <= x( is an accumulation point.

31



Fall 2017 Real Analysis Course Notes 19 2017-11-08

(i) In (R2,||-|ly), R x {0} is meager (exercise).

(iii) In (R,|-|), the Cantor set C' is nowhere dense.
Indeed, C' is closed. If ¢ = 0.t1t2 - - - € C (ternary representation), then given € > 0, find & so 3% < ¢ and then

t'=041ts.. .ty _11tgy1--- € B(t,e)\ C.

(iv) Q=U,ecola} is meager in (R,|[-[) (using (i)).
(v) Q= Uyeqfa} is meager in (Q,|-]) (using (i)).

Note: if (X, d) is not complete, it may be meager in itself. [meager sets are interesting in complete settings.]

Remark: If (X, d) is a metric space, U C X is open and zg € U, then there is € > 0, s.t. Blz,e] C U (Indeed, let &’ > 0 be so
B(z,e') CU, and € € (0,¢)).

Lemma 19.1. Let (X, d) be a metric space, N C X. Then N is nowhere dense <— X\ N = X.
Proof.

N is nowhere dense <= for any z € N,e > 0, B(z,e) \ N # &
< € X\ N forany x € NU(X \ N).

Theorem 19.1 (Baire Category Theorem). Let (X, d) be a complete metric space.
(i) Suppose {U}52, is a sequence of open sets, each dense in X. Then ()2, U, is dense in X.
(ii) If M C X is meager, then M° = @.

Proof. (i) Let 29 € X and g9 > 0. We wish to show that B(zg,e0) N[, U, # 2.
Since U; = X, there is 21 € B(zg,&0) N U; (using meet set characterization of closure). Let e > 0 be chosen so
B[xl,sl] Q B(l‘o,e’:‘o) n U1.
Since Uy = X, there is 2o € B(z1,e1) N Us.
Let €3 € (0, 5] be so Blza,e2] € B(z1,61) NUa.
Inductively, having chosen x,,,¢,, we appeal to the fact that W = X to find z,,+1 € B(zy,en) NUpt1, then choose
ent1 € (0, %] and Blzpi1,n41] € B(2n,€n) N Unya.
Thus, we have (2,)52; C X, (£,,)521 C (0,00) s.t.

(a) BlTnt1,ent1] € B(Tn,en) C Blrp, en]
(b) diam By, e,] = 26, < ep1 < 52 < < 55
(¢) Blzn,en] € U, N B(xg,e0).

Then (a) & (b), with the Nested Sets Theorem, show that (2, Blz,,&,] # 2.
Further, (c) shows that @ # (), Blan,en] C (o Un N B(zo, o).
Hence, for any z¢ € X, g9 > 0, B(2o,0) N[Ny Un # D, s0 (g Un = X.

(ii) Write M = {J;2, N, each (N,,)° = @. Then U,, = X \ N, is open, and dense in X, by Lemma.

We have
X\ M=X\ UNnQX\ Um(aseachNngm)
n=1 n=1

=(NE\N) = Un

n=1
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so X\ M = X. Thus if v € M,e > 0, we have B(z,e) \ M = B(z,e) N (X \ M) # @. Thus ¢ ¢ M°, i.e. M° =0

Question: Let {gx}72, = Q. Let for n in N

1

Un = U 2kn+1 ) Ak + 2kn+1)
k=1

length is Qn—k

Uy, is a union of intervals, sum of lengths is > 72 ; (2,,1L>k = 2”1
oL
2’71/

Q=2 0.7

20 2017-11-10

Remark: In particular, a nonempty open subset in a complete metric space is nonmeager. The whole of X is a nonempty open set.

Corollary 20.1. A residual set in a complete metric space is nonmeager.

Proof. Let R C X be residual, so M = X \ R is meager, so X \ R = J,—; N,,, each (N,)° = @. If we had that R was meager,
ie. R=U>2, N, (N7°) = @, then

X =RU(X\R) = DN,’LUDNn

countable union of nowhere dense sets
But X° = X, so this contradicts B.C.T. O

meager = “small”, residual = “bigness”, “typical elements”

Definition: Let (X, d) be a metric space.

. G C X is a Gs-set if G = (., Uy, each U,, open

n=1

2. FC X isan F,-set if F = J., F,, each F,, closed

n=1

Examples:

1. In A4,Q2, we saw that any closed set is Gy
(i) Any open set U C X is F,, (De Morgan’s law)

2. R\ Q is not F,.
First, Q = U,cqlq} is Fir. Second, if F' C R\ Q is closed, then [ is nowhere dense (this just follows density of Q). Thus
if we had an F, realization R\ Q = J,~; F,, F,, C R\ Q closed, then R\ Q is meager. Thus,

R=QuUR\Q) = [J{ag}u UF

qeQ n=1

would be meager which violates B.C.T. (Corollary just stated).
(ii”) Q is not G5 (De Morgan, from (ii)).
In particular

1
Qg ﬂ U 21m+1’q’€ + 2kn+1)

n=1k=1

U’!‘L
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{an}nz, = Q.
Corollary 20.2. In a complete metric space, a dense Gg-subset is residual.

Proof. In complete (X,d), if G =2, Uy, each U, open, and G = X, then each U,, = X. Thus, by lemma before B.C.T.,
each X \ U,, is nowhere dense hence X \ G = X \ (', U,, = U;— (X \ U,) is meager. O

Theorem 20.1 (Uniform Boundedness Principle). Let (X, d) be a complete metric space and {f;}ier C C(X) (continuous
R-valued functions) which satisfies for each x

sup | fi(z)| < oo (pointwise boundedness).
‘el

Then there exists an open @ # U C X s.t.

sup sup | f;(x)| < oo (uniform boundedness on U).
i€l xeU

Proof. For n in N let
F,={xe X :|fi(x)] <nforalliel}.

By our pointwise boundedness assumption,
oo
X = U E,  (%).
n=1

Each F,, is closed:

Fn=glfi\‘1((—oo,n])=g(X\ il Y(noo0) )

open, as |f;(+)| is continuous

closed

But B.C.T. tells us that our complete X is non-meager, so for some ng, Fj; # &. Let U = F; , and for allz € U C F,,

|fi(x)| < ngforalliel
= sup | fi(z)] <mg for alli e ]
z€U

= supsup |f;(z)| < nop < oc.
i€l zeU

O

Corollary 20.3 (Banach-Stenhaus Theorem). Let (V,|-||;;) be a Banach space, (W, ||-||y;;) a normed vector space, and
{Ti}ier € B(V, W) satisfies

sup||Tiz||y, < oo for each z € V.

iel

Then
Sup ITill < oo. [Recall |Tif| =  sup [Tz |

zeBy (0,1
Proof. Let fi(x) = ||Tiz|y, fori € I,z € V, so {fi}icr C C(V). Our assumption on {7;}icr, gives pointwise boundedness of
{fi}ier, so U.B.P provides @ # U C V for which

M = sup sup||T;z| < oo.
i€l zeU

As U is open, if zg € U, there is € > 0, B[zg,¢] C U.
Now if z € By[0, 1], then we may write

1( + )+1( +ez)
= —(— € — €
z % i) z 26.2?0 z
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and, for 7 in I, we have

1 1
| Tiz||y < % Ti(xo—ez) +£ Ti(xo+ez)
€Blz,e]CU w €BJz,e]CU w

1 1 M

< —M+—M=—.
2e 2¢e €

M
=Tl = sup |[Tizlly < — < oo

z€By[0,1] €

21 2017-11-13

21.1 BAIRE-1 FUNCTIONS

Def: Let @ # X C R, so (X, d) is a metric space with relativized metric from R.
A function f: X — R is called Baire-1 if there is a sequence (f,,)22; C C(X) such that for t € X,

f(t) = lim f,(t) (pointwise limit).
n—oo
Remark: Unlike uniform limits, pointwise limits of continuous functions need not be continuous.

Example: Let X = [0, 1], f,(t) = ¢t™. Then
0 tel0,1)
1 t=1.

n—oo

i 5,0 {

Question: Let for ¢ in [0, 1],
fut) = cos(n!ﬂt)"!n!.

Ift=%¢cQ,0eN, then f,(t) =1,ift > £+ 1.

Does limy, 00 fn(t) = Xaqnio,1)(t) for ¢ in [0,1]?

Answer: No. (Probably the limit does not exist.)

The answer will follow from (corollary to) the next theorem and B.C.T.

Theorem 21.1 (Baire). Let a < b, and f : (a,b) — R be a Baire-1 function, then there is ¢y in (a, b) such that f is continuous

at to.
Xxo(t) = lim lim |cos(n!mt)™|

n—o0 m—roo

(®)

X k
{1 ke2}

Baire-2 = pointwise limit of Baire-1 functions.
At no ty is xq continuous, thus not Baire-1.

Proof. Let f(t) = limp oo fn(t),t € (a,b), (fr)oz, C C(a,b).
(I) Given ¢ > 0, we will show that there are a < 8 in (a,b), and N, in N such that for all n,m > N,

[fn(t) — fi(t)] < e fort € [a,f].

Let us proceed by contradiction. Hence, there exists ¢; in (a,b), and ni, m; € N such that

| fr (t1) = fm, (t1)] > €.
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Since each f,,,, fm, is continuous, there is an open interval I; C I; C (a,b) such that

|fﬂ1(t) - fml(t)| > ¢ for t € Il.

[t — |fn, (t) — fim, (t)] is continuous.]
Next, by assumption, there is ¢t € I; such that there exist ng, mo > max{ny,m;} such that

| frp (£2) = [,y (t2)] > €.
Again, as f,,, fm, are continuous, there is an open interval I, C Iy C I; such that
| Fra(t) — Fms (t)| > € for t € L.

Inductively, we obtain

e a sequence of intervals o o -
LOoLODILbD>IbD>---DI,DI,D> -, and

e two increasing sequences (ny)7;, (M), C N such that

| frp () = fim, (£)] > € for t € I.

Thus, by Nested Intervals Theorem, there exists
we o= NEC Nk
k=1 k=2 k=1

so tg € I, for each k, so

|f7lk (t) - fmk (t)| > E. (T)

But, by pointwise convergence, f(tg) = limx— o0 fi(to) 80 (fn(t0))52; C R is Cauchy. This violates (). Hence (I) holds.
(IT) We use (I), with e = 1, to find a3 < 31 in (a,b) and N7 in N so

|frn(t) — fm(t)] <1 for t € [aq, 1], if n,m > Ny.
We again use (I), with ¢ = 1, to find ap < B> in (a,b) and N3 in N so

|fat) = fin(t)| < 5 for t € [ag, Bo], if n,m > Nj.
Inductively, we obtain

e intervals
(a,b) D [a1, B1] D (a1, B1) D [ae, B2] D (a2, B2) D -+ D [, Bn] D (ap, Bn) D ---, and

e an increasing sequence (Nj)?2; C N such that
[ fn(t) = frn ()] < % for t € [ag, Bx], if n,m > N. (1)

By N.I.T. (Nested Intervals Theorem), there exists

to € () lak, Bkl S ) (k. Br)-
k=1 k=1

Now, given € > 0, let k in N so % < ¢, and then let § = min{ty — ag, Bx — to} > 0 so (tg — d,t0 + ) C (ak, Br) C [ak, Bl
Hence by (1), we have that

|fu(t) = fm(t)] < £ < e whenever t € (tg — 0,tg + 8),n,m > N.
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Hence (f,)52; converges “uniformly at to” (see Assignment 6), so f is continuous at ¢y (Assignment 6). O

Corollary 21.1. Let a < bin R, f: (a,b) — R be a Baire-1 function. The set G = {t € (a,b) : f is continuous at t} is a
dense Gs-subset of (a,b). [By B.C.T., G C [a,b] is residual.|

Proof. 1f ty € (a,b) and € > 0, then there exists t € (tg —&,tg +) N (a,b) NG. Le. GN (tg —¢e,to+¢) # @, so G = (a,b)
(relativized topology). Furthermore, the set G is always G5 (Assignment 6). O

Example: XQ is not Baire-1 on any interval.

nowhere continuous

22 2017-11-15

Corollary 22.1. Let f € C(a,b) (a < b in R) be right differentiable on (a,b). Then f/ (right derivative) is continuous on a
dense Gs-subset of (a,b). [In particular, if f is differentiable, f’ is continuous on a dense Gs-subset.]

Proof. Let hy(t) = min{b—t, 1} for n in N, ¢ in (a,b). Then

£+ halt) — (1) <: ft+ 1) - 1)
0

fn(t) =

satisfies that each f,, € C(a,b) and
fit) = ILm fu(t) for each t € (a,b).

22.1 ON THE BANACH SPACES C'(X), X COMPACT
First case X = [a, )], compact interval in R.

Lemma 22.1. For n in N let g, (t) = ¢, (1 — t?)" where c,, satisfies

1
1= cn/ (1 —t*)"dt.
~1
Then

(1) qn(t) > 0 for ¢t € [-1,1],n in N (non-negative)

1
(¢2) / gn(t)dt = 1,n in N (total mass 1)
—1

-5 1
(¢3) if § € (0,1), then (/ +/ ) gn(t)dt =% 0 (concentration of mass near 0)
-1 5

Proof. (q1) and (g2) are obvious. Now for ¢ € [0, 1],

P<t=1-t<1-#¢
= (1-t)" < (1 -t}

and hence

1 1 1
— :/ (1 —tH"dt = 2/ (1—t>)"dt
Cn -1 0
—2 2

1
<2 1—t)dt = ——(1—-t)"*| =
- /0( ) n+1( ) o n+1
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s0 ¢, < EL. Hence, for |t| € (6,1), we have

() = cn(1 —12)" < (1 —t3)"
]- n
n -+ (1 B t2)n —00 0.

2 ~—
<1

(174w () 0o

=(1-08)(n+1)(1—-6)" 2220,

<

Thus

O

Theorem 22.1 (Weierstrauss approximation theorem). Given a < b in R, f € C|a,b], there exists a sequence (p,)52; of

polynomial functions such that
—
(WA) o = fll = mas |pa(t) = £(05)] 225 0.

Proof. (I) We condition f. Let fe C[0,1] be given by

Ft) = fla+tb—a) = [f(b) — f(@)]t — f(a).
So
o f(0)=f(b) = f(a) =0
o f(1) = f(b) = [f(b) = f(@)]1 = f(a) = 0.

If we can find a sequence (p,,)52; of polynomials,

b= F||_ = sup [ma(t) = o) 2= 0

t€0,1]

we are done. Indeed, if s € [a,b], then define each p,(s) = p, (32 (s —a)) + W(s —a) + f(a); may be easily shown to
satisfy (WA).
(IT) Let us assume that

fe0,1],£(0) = 0 = f(1).
We can extend f to R by letting f(¢) =0 for ¢t € (—o0,0) U (1,00), so f € Cy(R), but f(¢) # 0 only possibly for ¢ € [0, 1], and
f is uniformly continuous [any function in C[0, 1] is uniformly continuous].
Let (gn)52; be as in the last lemma, and let for each n in N and each ¢ in [0, 1],

pn(t) = /0 qn(s — 1) f(s)ds.

Let us compute, for each n,t,
d2n+1 1 aZn—i—l
at2n+1 qn(s - t) f(s)ds
function is 2n + 2-times continuously differentiable

=0, since degq,(t) = deg(l —t*)" = 2n.

promsy A0
dt2n+1 0

= p,, is a polynomial, degp,(t) < 2n.
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By change of variable u = s —t,

Hence for ¢ in [0, 1],

[palt) — F(8)] = / g () f (s + £l — / () (2)d

—1
~——_— ———
property (q2)

g/ W ()| £+ 1) = F(8)]du.

-1

Given € > 0, let 6 > 0 be so |z —y| < §(z,y € R) = |f(x) — f(y)| < § and then

)
|p,b<t>—f<t>|s[5q7z<)\f<u+t> |du+</ /)q ) £+ 0) = ()] du

<5 £, by choice of § <2Hf”

=
<5 [ at du+</ />q )20 fll et by (q1) "2 £ 40,

(Continued next lecture.)

23 2017-11-17

We saw p,, is polynomial, i.e. d®"*+1/dt?>"+1p, (t) = 0. Need approx.
Using (q2) we saw for ¢t € [0,1]

pu(t) — ()] < / () -+ 1) = (0)]d

(q1)

Given € > 0, use uniform continuity of f to find 0 > 0s.t. [v —y| <d = [f(z) — f(y)| < §.
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[pu(t) - / W+ )~ F(0)ldu
-5
=/ Wit = fOldu+ [ / ) [0+ 1) = ()] du
<2||fH
g/ du+</ />q )2 fl]odu
. - 1
<2 [ awarri ([ [ ) autan
- _
1 )
=1(q2)
Hence, if n. isson > n. — (f +f5)qn du<m
we have for n > n.,
e e
— < — _- =
Ipat) — S < S+ 5 =¢
and we thus have
I = Flle = o pa(t) = £(0)] < &
and we thus see that lim,_, p, = f in (C[0,1], ||| .)- O

Corollary 23.1. If f € C'[a,b] (differentiable on [a, b], with continuous derivative). Then, given & > 0, there is a polynomial

p s.t.

Hp/ - f”oo <eg
1P = flloo < (b= a)e.

Proof. By Weierstrauss approximation theorem, find a polynomial ¢ s.t. || f" —¢||, <. Let p(t) = f(a) + fat q(s)ds

that this works. (Remember Fundamental Theorem of Calculus.)

Corollary 23.2. (Cla,b], ||-||.,) is separable.

Proof. Let f € Cla,b],e > 0.
By Weierstrauss approximation theorem, find polynomial p s.t.

If = plle <

Write p(t) = ap + a1t + - - -+ ant™. For j =1,...,n let ¢; € Q be such that

9
2(n + 1) max{[a|7, [b]7 }

la; — ;] <

then let r(t) = qo + qut + - - - + gut™.
Check that for each ¢ in [a, b],

p(t) = ()] <

8o [|p — 7|l = maxieiay Ip(t) — ()] < 5,
and thus

1f =7rlloe I =Pl +llp =7l <€

. Check
O

O

Theorem 23.1 (nowhere differentiable functions are generic). Let NDI0, 1] denote the set of f in C]0, 1] which are nowhere

differentiable. Then N DIJ0, 1] is residual in Cfa, b].
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Proof. Recall for M, > 0,

S~ Ol _
PRI

forallt € [0,1]N[(x — 6, 2) U (z,z+ )] }

Fuys ={f € C[0,1] : there is z in [0,1] so

(A5,Q1).

(I) Let us see that each F s is nowhere dense in (C[0, 1], ||| )-

To this end, let f € Fas 5,6 > 0.

First, use Weierstrauss approximation to get a polynomial p so ||f —p||., <
M’ = supepo y [ (9]

Let

£
3+

In particular, p’ exists everywhere, let
t—n ten,n+1,n e {0}UN iseven

: 10 — 0,1 t) =
#:[0,00) = [0,1], (1) {n+1—t temnn+1,neN isodd .

For each k in N let ¢y (t) = $o(k?t).
For s,t € [25t, &],n €N,

lon(s) — wr(t)]
e koo (1)

Nowletkbeso%< 5 andk—M’>M,k%<(5.
Let ¢, = p + ¢k and we have for s,t satisfying (1),

|t (s) — v (t)] ’p(s) —p(t)  r(s) — x(t)

|s — ¢t s—t s—t
o | [ls) = ()] _ lp(s) —p(t)]
- |s — |s — 1
——— S———
k <M’, by Mean Value Theorem
>|k—M|=k—-M > M.
Hence ¢y, ¢ Fars. And [|f =il <If = pllo +|p— x| <5+%<e O
——

—Pk oo

24 2017-11-20

Theorem 24.1. ND[0,1] = {f € C[0,1] : f is nowhere differentiable} is a residual set in (C[0,1], [|-]| .. )-

Proof. We saw:
Each
[f(z) — f@)]

Fys={f€C[0,1] : 3z in [0,1], P

<M forte0,]]N[(zx—d,z)U(z,z+9)]}

is closed (A5), nowhere dense (I).

(II) Let SD[0,1] = C[0,1] \ ND[0, 1] (“somewhere differentiable”). If f € SDI[0,1], in A5, it was shown that f € Fj s for some
M > 0,0 >0. If n €N, with n > max{M, %}, then Fir s C Fn 1. Then

o0
SD[0,1] = U F 1, each F 1 closed, F°, =0.
n=1 n ™ ™
Thus SDI0, 1] is meager, so ND[0,1] = C0,1] \ SD|0, 1] is residual. -

Remark: Baire Category Theorem tells us that in the complete metric space (C[0, 1], ||| . )-
residual = “large” = “generic”
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24.1 TOWARDS STONE-WEIERSTRAUSS THEOREM

Notation: (lattice structure)
Let X be non-empty, f,g: X — R. Define

(join”)  fVg: X =R, fVg(r)=max{f(z),g(x)}
(“meet”, min) fAg: X =R fAg(x) =min{f(z),g(z)}.

Proposition 24.1. Let (X, d) be a (compact) metric space, f,g € C(X). Then fVg,fAge C(X).

Proof. 1f a,b € R, then max{a, b} = 1(a +b) + %|a — b|.

Hence 1 1
fvg=5(f+9)+5 |f — g € C(z).
2 92 <z
f—g compact with ||
Also min{a, b} = — max{—a, —b}, so

fng=—(=f)V(=g) € C(X).

Notation: A family £ C C'(X) is called a lattice if for each f,g € L, fV g,f Ag € L. Notice if f1,..., fn € L,

fivfeel
= fivfoVfsel

. (obvious induction)
= fiv---V f,eL.

Likewise f1 A--- A frn, € L.

Theorem 24.2 (Stone). Let (X, d) be a compact metric space and let the lattice £ C C'(X) satisfy
e [ is a R-space
e 1 € L (contains constant function)
e [ separates points: if x # y in X, there exists ¢ € L, so p(z) # ¢(y).
Then £ = C(X) (£ is uniformly dense in C(X)).
Proof. Suppose © # y in X and «, § € R. Since £ separates points, there is ¢ € £ with ¢(x) # ¢(y). Then

08—«

g=ol+ o(y) — ()

[p —@(x)1] € Las 1 € L, L is a R-subspace

with g(z) = a,g(z) = .

Fix f € C(X),e > 0.

(I) Fix z in X. For each y in X, letting o = f(z), 8 = f(y), if y # x, we have that there is
Gzy € L s.t. g:r,y(-r) = f(x)yga:,y(y) = f(y).

Since each f, g, are continuous (near y), there are 6, > 0 so that

d(z,y) < 0y = guy(2) < f(2) +eie gpy < f+eon Bly,dy)

(i.e. goy — fis 0 at y so < ¢ in a neighbourhood of y)
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Since X = J,cx B(y,dy), by compactness, there are y1,...,ym s.t. X = U;nzl B(yj,0,,). Let
9z = oy N NGay, €L
and we have g, < g, , < f +¢€l.

Notice that g,(x) = min{f; 4, (z),.. ., fz.y.. (@)} = f(2). O

25 2017-11-22

Small goof up:
Then we let g, = gz yy A+ A Gy, € L.
Now, if z € X, then z € B(y;,d,,) for some j =1,...,m and then

92(2) = Guyy N+ AN Gay, < Gayy, (2) < f(2) + ¢, property of 6, w.r.t. y;

so we have
9 < f+el, and g.(z) = f(z).

(IT) For each z in X, we found g, € L s.t. g, < f +¢l,g9.(x) = f(x).
Hence g, () = f(z) < f(z) + € at each z, so there is §, > 0, s.t.

9:(2) > f(2) — e for z € B(x, ;).
We have X = J, .y B(z,6,) so there are z1,...,2, € X so X = U?Zl B(xj,65;). We then let
9=0x, V- Vg, €L
For z € X,z € B(xj,0,,) for some j =1,...,n, so

J

and thus
g>f—el.

Furthermore, each g,; < f +¢l, so if z € X, then g(2) = g, (z) for some j, so
9(2) = g2,(2) < f(z) +te =g < f+el

ie. f—el<g< f+el,s0g¢€ B(f,e)in (C(X),]l.)- B
In summary, given f € C(X),e >0, B(f,e) N L # @. Hence, L = C(X). O

Corollary 25.1. (i) Let £L = {f € C[a,b] : f is piecewise affine (A5)}. Then £ = Cla, b].
(ii) Let C be the Cantor set and £ = {f € C(C) : |f(C)| < Xg}. Then £ = C(C).
Definition: Let (X, d) be a (compact) metric space. A subset A C C(X) is called an algebra if for f,g € A,a € R, we have

f+age A (A is a R-subspace)
fge A (A is closed under pointwise multplication)

(If f,g € C(X), then fg € C(X), too.) If f1,...,fn €A, f1--- fn € A too.
If 1 € A, and p(t) = 3.1, a;t’, then for f € A,

pof=aol+arf+afi+-+a,f* €A

(f¥(x) = f(x)* for x € X.)
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Theorem 25.1 (Stone-Weierstrauss Theorem). If (X, d) is a compact metric space, A C C(X) satisfies
e A is an algebra
elcA
e A separates points: for x # y in X, there is g € A so g(x) # g(y)

Then A = C(X) (uniform closure).

Proof. (I) If f € A, then |f| € A. First, since (X,d) is compact, f continuous, f(X) C R is compact, hence bounded, so
there is @ > 0 s.t. f(X) C [—a,a]. Now, the Weierstrauss approximation theorem provides (p,)52; of polynomials s.t.

[P =1+ [lloe = maXtei—a,a) [Pn(t) — [t]| = 0. Hence [|pn o f — [l = maxzex [pn(f(2)) — [f(2)]] =0
Each p, o f € A.

(IT) Since A is a R-subspace, so is A (A4 Q1). If f,g € A, let f = lim,, 00 fn,g = lim, o0 gn under uniform limits, each
fr,gn € A. Then

fvg=35(f+g) +3lf—gdl
= hngoé(fn +gn)+%|fn_gn| €A

n—

€ACA €A by (I)

since A is closed.

Also, fAg=—(—f)V(—g) € A as well.

= A is a R-subspace and a lattice. Also, 1 € A C A, and A separates points, hence A separates points.
Thus A is dense in C(X), but is closed, so 4 = C(X).

26 2017-11-24

Example: Let I = [a1,b1] X -+ X [an, b,] be a non-empty compact interval in R™. A polynomial on [ is any function

p(tlv"'vtn) = Z gy, ..., jntjl.l tfln

where each aj, . ;. € R, N € N. By Stone-Weierstrauss Theorem, the family P(I) of polynomial functions is dense in C'(I).
Example: Let (X, dx), (Y,dy) be compact metric spaces. Let ||-|| be a norm on R2. Define

PX xY)x (X xY)—[0,00) by

P((xl, yl)v (x% y2)) = H (dX(xlv xQ)v dY(ylv yQ)) H

It is “obvious” that p is a metricon X x Y.
(Usually, ||| = ||l g [Illy: [I-ll on R?.)
Furthermore, (X XY, p) is compact. Indeed, let (@, yn))22; € X XY be a sequence. Then (z,,)22; C X admits a converging
subsequence: let x = limy_,o ©,,, € X. Then (y,, )52, C Y admits a converging subsequence: let y = limy Yny, €Y.
Notice that

p((z,y), (mnke ) ynk@))

— | ax @ ). dy (v 90,)|

< dx (@, ny, )[|(1, 0) [} + dy (55 Ym0, D]

{— 00
— 0.
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Hence (25, Yn,, )72, is a converging subsequence of ((2n,yn))5Z. Suppose that each Ay C C(X) and Ay C C(Y), each
satisfy assumptions of Stone-Weierstrauss Theorem. If f € Ax,g € Ay,

f@g: X xY =R, fegley) = flz)g(y).

Let Ax ® Ay =spang{f ®g: f € Ax,g € Ay }. Convince yourself that Ax ® Ay C C(X x Y) and satisfies assumptions of
Stone-Weierstrauss Theorem.
Hence Ax ® Ay = C(X x Y') (uniform closure).

Corollary 26.1 (Stone-Weierstrauss without constant functions). Let (X, d) be a compact metric space, and A C C(X)
satisfy

e A is an algebra

e A separates points

e there is zg in X s.t. f(zp) =0 for f in A.
Then A = Cy (X) :={f € C(X) : f(z0) = 0}.

Proof. First, Cy,(X) is closed in C(X). (Let ¢ : C(X) — R, o(f) = f(x0), which is linear and continuous: ||¢| <1 (seen
before). Then C,, (X) = ¢~ ({0}) = C(X)\ ¢ }(R\ {0}). Since A C C,,(X) = A C Cp,(X). )
——

open

N —

open

closed
Second, note that R1+ A={al+ f:a €R, f € A} satisfies R1+ A=C(X). lf g e R1+ A, write g =al+h,a € R,h € A,
and g(xg) = a+ h(zg) = aso g = g(xo)1 + h.
Now, if f € Oy, (X), there exists (g,)3; C Rl + A s.t. ||f — gull, ——> 0 (Stone-Weierstrauss Theorem). Write each
9n = gn(20)1 + h,, where h,, € A. Notice that 0 = f(z¢) = lim,— 00 gn(z0). Hence

1f = hnlloe <1 = (gn(x0)1 + hn)ll o + [lgn(z0)ll
= If = gnlloe + lgn(zo)l (Ml =1)

n—oo
0.

Thus C,,(X) C A. O

Def: Let C(R) = {f € C(R) : limpyjy00 f(t) = 0}. Then Cx(R) C  Cy(R) and is a closed subspace. (Ly : Cy(R) —

R, Ly (f) = limy—, 1o f(t), then L, L_ are linear and with ||Ly || < 1. Then Cw(R) = L7 ({0}) N LZ'({0}) is closed.)
Corollary 26.2. Let A C Coo(R) satisfy that

e A is an algebra

e A separates points

e for each t of R, there is f € A s.t. f(t) #0.
Then A = C(R) (uniform closure).

Proof. (Sketch of proof) ¢ : R — (—1,1),¢(t) = \tlﬁ’ then 1) is continuous and bijective with »~(—1,1) — R continuous.
Let S = {(z,y) e R? : 22 +y? = 1}.

e(=1,1) = S\{(-1,0)}
©(s) = (cos(ms), sin(ms))
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o ¢ is a continuous bijection with continuous inverse. Hence, p o ¢ : R — S\ {(—1,0)} is a homeomorphism, i.e. continuous
bijection with continuous inverse.
Define

\I/ . COOGR) — C(,Lo)(s)
U(f)(x,y) = F@ " o™ (z,y)).

Check that W is a surjective isometry, between (Coo (R), |||l o) and (C(—1,0)(S), ||| ), and hence has isometric inverse.
We have W(A) C C(_1,0)(S) satisfies assumptions of last corollary, so \II(A) = C(_1,0)(S) but it follows that A = U~(¥(A))
Coo(R).

o

27 2017-11-27

Today’s subject: towards Arzela-Ascoli Theorem (by guest lecturer)

Def: Let (X,d) be a complete metric space. Let F/ C X be a subset. We say F is relatively compact if F is compact. (Here F'
means the closure of F.)

Proposition 27.1 (Properties of relatively compact subsets). Let (X, d) be a metric space, F' C X. TFAE:
1. F is relatively compact
2. Every sequence (z,) admits a Cauchy subsequence (z,, )
3. F is totally bounded

Proof. (i) = (ii) Let (x,,) be a sequence in F. Since (z,) is in F and F is compact, (r,) has a Cauchy subsequence (z,, )
(that may converge to a point in F'\ F).

(ii) = (i) Let (x,,) be a sequence in F. We want to show there is a subsequence (z,, ) converging to a point in F' (note this
is nonempty by characterization of the closure).

For each n € N, let y,, € B(zy,, -) N F. Now, by (ii), there is a Cauchy subsequence (yn,,).

Claim: (z,,) is Cauchy.

For k, ¢ > 1,
A(@ny s 2n,) < d(@pgs i) + dYnis Yo, ) + A&y Yn,)
nik + d(Yny s Yn,) + i B2y,
(i) = (iii) F is totally bounded since it is compact. So for § > 0, there are 1,...,z, € F s.t. the B(z;, §)s cover F (i.e.

Ui B(zi,5) 2 F.)
For each i, choose y; € B(x;,5) N F. Then B(y;,€) 2 B(x4,5) 50 Y1, .., Y, is an e-net for F.
(iii) = (i) Since F is totally bounded, there is an e-net y1,...,y, € F. So

!
N

B(yi,¢)

<
Il
—

Bl
N
s
™
s
o

@
Il
—

l
]
N
C-

B(y;, 2¢).

@
Il
-

So F is totally bounded. 0O

Def: [Equicontinuity] Let (X, d) be a (compact) metric space. A subset F' C C'(X) is equicontinuous if for ¢ > 0 and z € X
there is § > 0 s.t. if d(x,y) < ¢ then |f(y) — f(x)| < eVf € F (holds for all f simultaneously).
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Lemma 27.1. If (X, d) is compact and F C C(X) then F is equicontinuous <= F' is uniformly equicontinuous meaning
for € > 0 there is 6 > 0 s.t. if ,y € X and d(z,y) < 6 then |f(z) — f(y)| <eVf € F.

Proof. If F' is uniformly equicontinuous it is clearly equicontinuous.

For the other direction, fix & > 0. For each x there is 0, s.t. if d(x,y) < 0 then |f(y) — f(z)] < e/2Vf € F. Then (B(z,d;))zex
is an open cover. Let § > 0 be the corresponding Lebesgue covering number. So for any y € X, B(y,d) C B(x,d,) for some
x € X. Soify,z € X with d(y,z) < d, choose z € X s.t. B(y,0) C B(x,d,), then

f) = fEI<1fy) = F@)+[f(2) = f2)] (2 € B(x,0.))
<egf2+¢e/2=c¢.
O
Ex: Let F be a set of differentiable functions from [0,1] to R s.t. |f'(z)] < MVf € F,x € [0,1] for some M. By the MVT, for
z,y € [0,1] thereis z € [0,1] s.t. M > |f'(2)| = %ﬁm
[f(y) = f(@)] < My —x|Vy,z € [0,1],Vf € F.
Now take § = 7. Then if [ — y[ < ¢ then

|f(z) = f(y)] < Mz -y

5
—-— — 0.
<M )

28 2017-11-29

Office Hours:
Today: 2:30-4:30
Tomorrow: 2-4 pm

Last time:
In complete (X, d), TFAE:

(i) relative compactness
(ii) every sequence admits a Cauchy subsequence
(iii) total boundedness
Discussed for F' C C(X):
e equicontinuity = uniform equicontinuity if (X, d) compact
e pointwise boundedness

Theorem 28.1 (Arzela-Ascoli Theorem). Let (X, d) be a compact metric space, F C C(X). Then
F is relatively compact in (C'(X),|-||,,) <= F is both equicontinuous and pointwise bounded.

Proof. (=) F is totally bounded. In particular, F' is bounded: sup;cp||f|l,, < oo (totally bounded == bounded). Hence

for z in X, supsep [f(2)] < suppepsup,ex [f(@)] = supsepl fllo < oo

Given € > 0, let f1,...,f, € Fst. F C U?ZIB[fj,g}. Let for j =1,...,n, §; > 0 be so for z,y in X, d(z,y) < §; =
|fi(z) = f;(y)| < § (uniform continuity of f;). Then let § = min{dy,...,d,} and then for 2,y in X, d(x,y) < J, we have for
fin F, then f € B[fj, §] for some j. Then

lf(z) = f)| < 1f(x) = f3()] + [ f5(@) = f;(w)| + 1 f3(y) — f()
<|f = fill + 5+ IIf = fill
<st+5+§=e
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Hence, F is (uniformly) equicontinuous, thus equicontinuous.
(<) Let (2,)22,; C X satisfy that there are ny < ny < ng < --- for which

oo Nk

X=UBknz) ®

k=1j=1

(assignment 5, (X, d) compact = (X, d) separable).

Now, let (f,)52,; C F. We wish to extract a uniformly Cauchy subsequence, hence showing F' is relatively compact.

(I) Let us extract a candidate Cauchy subsequence. This technique is a variant of “Cantor’s diagonalization argument”. First,
(fn(z1))52; C R is bounded (pointwise bounded assumption) so by Bolzano-Weierstrauss admits a Cauchy subsequence
(frar(21))72, CR. Let fi, = fn, for each k. Second, (fin(22))32; C R is bounded, and again admits a Cauchy subsequence

(frne(72))32; CR. Let for = f1,n,-
Inductively, we continue. We build sequences (f1 £)521, (f2,6)50 1, -5 (fnk)52q, - - € F which satisfy

e m<n, (fnr)i, is a subsequence of (frm k)5,
o (fnr(zn))i>, C R is Cauchy.
We now let
n = fn,n~

Then (gn)52,,, is a subsequence of (frm n)o2; S0 (gn(Tm))ox; is Cauchy in R, (being a subsequence of (fi n(m))oe,). Thus
(gn(zm))oe_; is Cauchy for each m in N, and (g)32, is a subsequence of (f,)52 ;.

(IT) Let us show that (g,)52, is Cauchy in (C'(X), |||/, ), i-e., Cauchy in [-|| .

Given € > 0, our set F', being equicontinuous on compact (X, d), is uniformly equicontinuous (lemma Monday), so there is
6 >0st. |f(z) = f(y)| < § whenever 2,y € X, d(z,y) <d and f € F.

Now, let k in N satisfy + < §, and we have from (f) that X = (J7*, B[z;,d].

Now, for j = 1,...,ny, let N; in N be s.t. m,n > N;j = [gm(7;) — gn(x;)| < § (le. (gn(x;))5Z, is Cauchy). Let

N =max{Ny,...,N,, }. f 2 € X, so x € Blz;, 6] for some j =1,...,n;, and we have for m,n > N that
|9m (%) = gn(2)] < |9 (@) — gm (25)] + |gm(25) — gn(@5)| + 190 (z5) — gn(2)]
< 5 + 5
~— ~—
thanks to uniform equicontinuity of F'; g, € ' n,m>N2>N; Cauchy at x;
+ 5 =e.

thanks to uniform equicontinuity of F'; g, € F
Hence ||gm — gnlloc = maxeex [gm () — gn(z)| <e.

— END OF FINAL LINE (except Assignment 7) — O

29 2017-12-01

Theorem 29.1 (Peano’s Theorem). Let D C R? be open and F : D — R be continuous, and (to,yo) € D. Then there are
a <binRsoty € (a,b) for which

(IVP)  f'(t) = F(t, f(1)), f(to) = yo.t € (a,b)
admits a solution.

(This is stronger than Picard-Lindelof, which required a Lipschitz condition on the second variable of a two variable function.)
The solution here may not be unique.

Proof. (Most of proof):
(I) (Get @ <b.) Let R = [a1,b1] x [az,b2] C D (compact interval) so (to,%0) € R° (interior), and let M = max ,yer [F(t,y)]-
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We let
W ={(t,y) € D: |y —yo| < M|t —tol}

and a < bin R so
([a,b] x R)yNnW C R.

(IT) (Work on [to, b], find a particular family of piecewise affine functions.) Given £ > 0, the uniform continuity of F on R
provides 6 > 0 such that

(s,2), (t,y) € R with max{|s — [, |z —y[} = [[(s,2) = (£, y)ll o <O
= |F(s,z) — F(t,y)| < e.

We partition [to,b},to <t <---<t,= b, SO maxj=17.,,7n(tj — tj_l) < ML—&-I (let M = O)
We define f; : [to, b] — R inductively by

Yo + F(to, yo)(t — to) t € [to, 1]
Je(t) + F(ta, fo(t))(t — t1) t € (t1, o]
fe(t) =
feltn—1) + F(tn—1, fe(tn—1))(t —tn-1) t € (tn-1,ts]
Two nice properties (exercise):
e graph of f. on [to,b] is in R, so maxcp, ) |f=(t)| < max{|az|, [b2|}
e if s < tin [tg,b], then |fo(t) — fo(s)] < M|t —s|  (f).
These estimates are independent of . Te. if we form K = {f.}.c(0,00) it is
e pointwise bounded & equi-Lipschitz = (uniformly) equicontinuous.

Hence K is relatively compact.
(ITI) (Relate K = {f:}ce(0,00) to the (IVP).) Fix f.,e and ¢ as in (¢ — ) above. If t € (tj,t;41),7 =0,...,n — 1 then

fé(t):F(tjvfs(tj))' (*)
2]

Also, for such ¢ as above, then [t —t;| < 3755 so by ()

M
_ N < < S
1)) = Jo0t)| < Mt = 1] 05 <0

0, by choice of ¢,

[F' (L, fo(8) = F(ty, f=(t5))] <
(using (x)) ==|F(t, f-(t)) — fl(t)| <& (%)

Thus for ¢ € [tg, b] we have

t
fe(t) =yo+ | fL(s)ds (piecing together F.T. of C., as f.(t) exists except at t1,...,tn_1)
to

— ot / Fs, fo(s))ds + / 71(5) = F(s, f-(s)))ds

to to
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Let f.(t) = yo + f:ﬂ F(s, f-(s))ds, and we have for t € [to, b]

() — Fo(1)] < / | £(s) — F(s, £-(5)) |ds

€

(% * *) < (t —to)e < (b—to)e.

We now consider a sequence (f1)%2; C K. By relative compactness, we get a uniformly Cauchy, hence uniformly converging
subsequence (f1 )72, f =limy_ oo f1 (uniform limit). Let f(t) =10+ ftto F(s, f(s))ds.
We have

] W e

*
o0

OOJFHfﬁ_fi fﬁ_ﬂ‘oo

We have limy o0 f1 (8) = f(s) uniformly for s € [to,b], so, by uniform continuity limy_, o |F(s, f1 (s)) — F(s, f(s))] =0
np "
uniformly for s in [¢g, b], and thus () £2%, 0. In conclusion

=A< e

+<b—to)nik+<i>

= f(t) = f(t) = yo + [, F(s. f(s))ds, i.e. f satisfies (IE) = (IVP).
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